

Quantum ergodicity in the Benjamini-Schramm limit in higher rank

Carsten Peterson

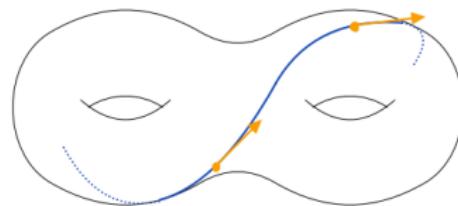
joint work with Farrell Brumley, Simon Marshall, and Jasmin Matz

Sorbonne University, IMJ-PRG

October 21, 2025

Geodesic flow on hyperbolic surface

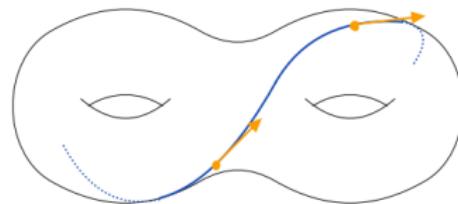
- Y compact hyperbolic surface
- $\Phi_t \curvearrowright T^1 Y$ geodesic flow



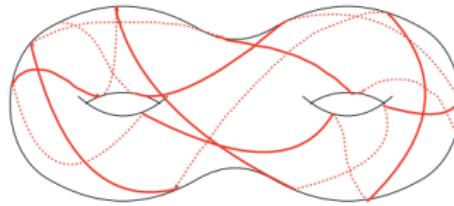
curvature $< 0 \implies \Phi_t$ is ergodic
 \implies generic geodesics equidistribute

Geodesic flow on hyperbolic surface

- Y compact hyperbolic surface
- $\Phi_t \curvearrowright T^1 Y$ geodesic flow



curvature $< 0 \implies \Phi_t$ is *ergodic*
 \implies generic geodesics *equidistribute*



Classical and quantum mechanics on Y

classical mechanics \approx $\Phi_t \curvearrowright T^1 Y$
geodesic flow

quantization

$h \rightarrow 0$

quantum mechanics \approx $e^{ith\Delta} \curvearrowright L^2(Y)$
Schrödinger flow

Classical and quantum mechanics on Y

classical mechanics \approx $\Phi_t \curvearrowright T^1 Y$
geodesic flow

quantization

$h \rightarrow 0$

quantum mechanics \approx $e^{ith\Delta} \curvearrowright L^2(Y)$
Schrödinger flow

Classical and quantum mechanics on Y

classical mechanics \approx $\Phi_t \curvearrowright T^1 Y$
geodesic flow

quantization

$h \rightarrow 0$

quantum mechanics \approx $e^{ith\Delta} \curvearrowright L^2(Y)$
Schrödinger flow

Classical and quantum mechanics on Y

classical mechanics \approx $\Phi_t \curvearrowright T^1 Y$
geodesic flow

quantization

$h \rightarrow 0$

quantum mechanics \approx $e^{ith\Delta} \curvearrowright L^2(Y)$
Schrödinger flow

Quantum particles

- Renormalize volume measure: $dVol = \frac{dVol}{Vol(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^2(Y, dVol)$ with $\|\psi\|_2 = 1$

$$\begin{aligned} \mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \int_E |\psi|^2 dVol \\ &= \int_Y 1_E \cdot |\psi|^2 dVol \end{aligned}$$

- If ψ were *equidistributed*:

$$\begin{aligned} \mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \frac{Vol(E)}{Vol(Y)} \\ &= \int_Y 1_E dVol \end{aligned}$$

Quantum particles

- Renormalize volume measure: $dVol = \frac{dVol}{Vol(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^2(Y, dVol)$ with $\|\psi\|_2 = 1$

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \int_E |\psi|^2 dVol \\ &= \int_Y \mathbb{1}_E \cdot |\psi|^2 dVol\end{aligned}$$

- If ψ were *equidistributed*:

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \frac{Vol(E)}{Vol(Y)} \\ &= \int_Y \mathbb{1}_E dVol\end{aligned}$$

Quantum particles

- Renormalize volume measure: $dVol = \frac{dVol}{Vol(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^2(Y, dVol)$ with $\|\psi\|_2 = 1$

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \int_E |\psi|^2 dVol \\ &= \int_Y \mathbb{1}_E \cdot |\psi|^2 dVol\end{aligned}$$

- If ψ were *equidistributed*:

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \frac{Vol(E)}{Vol(Y)} \\ &= \int_Y \mathbb{1}_E dVol\end{aligned}$$

Quantum particles

- Renormalize volume measure: $dVol = \frac{dVol}{Vol(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^2(Y, dVol)$ with $\|\psi\|_2 = 1$

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \int_E |\psi|^2 dVol \\ &= \int_Y \mathbb{1}_E \cdot |\psi|^2 dVol\end{aligned}$$

- If ψ were *equidistributed*:

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \frac{Vol(E)}{Vol(Y)} \\ &= \int_Y \mathbb{1}_E dVol\end{aligned}$$

Quantum particles

- Renormalize volume measure: $dVol = \frac{dVol}{Vol(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^2(Y, dVol)$ with $\|\psi\|_2 = 1$

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \int_E |\psi|^2 dVol \\ &= \int_Y \mathbb{1}_E \cdot |\psi|^2 dVol\end{aligned}$$

- If ψ were *equidistributed*:

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \frac{Vol(E)}{Vol(Y)} \\ &= \int_Y \mathbb{1}_E dVol\end{aligned}$$

Quantum particles

- Renormalize volume measure: $dVol = \frac{dVol}{Vol(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^2(Y, dVol)$ with $\|\psi\|_2 = 1$

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \int_E |\psi|^2 dVol \\ &= \int_Y \mathbb{1}_E \cdot |\psi|^2 dVol\end{aligned}$$

- If ψ were *equidistributed*:

$$\begin{aligned}\mathbb{P}(\text{observing } \psi \text{ in } E \subset Y) &= \frac{Vol(E)}{Vol(Y)} \\ &= \int_Y \mathbb{1}_E dVol\end{aligned}$$

The Laplacian

- Eigendata of Δ :

$$0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \dots \quad \text{eigenvalues of } \Delta$$

$$\{\psi_j\} \quad \text{ONB of eigenfunctions of } \Delta$$

- In QM, ψ_j has energy $h^2\lambda_j$. Let $h_j = \frac{1}{\sqrt{\lambda_j}}$.

fix h and let $\lambda_j \rightarrow \infty$ \approx fix energy and let $h_j \rightarrow 0$

- As $\lambda_j \rightarrow \infty$, should “recover” ergodicity $\rightsquigarrow \psi_j$ equidistributes

The Laplacian

- Eigendata of Δ :

$$0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \dots \quad \text{eigenvalues of } \Delta$$

$$\{\psi_j\} \quad \text{ONB of eigenfunctions of } \Delta$$

- In QM, ψ_j has energy $h^2\lambda_j$. Let $h_j = \frac{1}{\sqrt{\lambda_j}}$.

fix h and let $\lambda_j \rightarrow \infty$ \approx fix energy and let $h_j \rightarrow 0$

- As $\lambda_j \rightarrow \infty$, should “recover” ergodicity $\rightsquigarrow \psi_j$ equidistributes

The Laplacian

- Eigendata of Δ :

$$0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \dots \quad \text{eigenvalues of } \Delta$$

$$\{\psi_j\} \quad \text{ONB of eigenfunctions of } \Delta$$

- In QM, ψ_j has energy $h^2\lambda_j$. Let $h_j = \frac{1}{\sqrt{\lambda_j}}$.

fix h and let $\lambda_j \rightarrow \infty$ \approx fix energy and let $h_j \rightarrow 0$

- As $\lambda_j \rightarrow \infty$, should “recover” ergodicity $\rightsquigarrow \psi_j$ equidistributes

The Laplacian

- Eigendata of Δ :

$$0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \dots \quad \text{eigenvalues of } \Delta$$

$$\{\psi_j\} \quad \text{ONB of eigenfunctions of } \Delta$$

- In QM, ψ_j has energy $h^2\lambda_j$. Let $h_j = \frac{1}{\sqrt{\lambda_j}}$.

fix h and let $\lambda_j \rightarrow \infty$ \approx fix energy and let $h_j \rightarrow 0$

- As $\lambda_j \rightarrow \infty$, should “recover” ergodicity $\rightsquigarrow \psi_j$ equidistributes

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)

Let $a \in C^\infty(Y)$. Then

$$\lim_{\lambda \rightarrow \infty} \frac{1}{\#\{j : \lambda_j \leq \lambda\}} \sum_{j : \lambda_j \leq \lambda} \left| \int_Y a \cdot |\psi_j|^2 \, d\text{Vol} - \int_Y a \, d\text{Vol} \right|^2 = 0.$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $|\psi_j|^2 d\text{Vol}$ and $d\text{Vol}$ weakly (integrate against test function)
- Interpretations:
 - Generic high energy quantum particles equidistribute.
 - Generic bounded energy quantum particles equidistribute as $\hbar \rightarrow 0$.

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)

Let $a \in C^\infty(Y)$. Then

$$\lim_{\lambda \rightarrow \infty} \frac{1}{\#\{j : \lambda_j \leq \lambda\}} \sum_{j : \lambda_j \leq \lambda} \left| \int_Y a \cdot |\psi_j|^2 \, d\text{Vol} - \int_Y a \, d\text{Vol} \right|^2 = 0.$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $|\psi_j|^2 d\text{Vol}$ and $d\text{Vol}$ weakly (integrate against test function)
- Interpretations:
 - Generic high energy quantum particles equidistribute.
 - Generic bounded energy quantum particles equidistribute as $\hbar \rightarrow 0$.

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)

Let $a \in C^\infty(Y)$. Then

$$\lim_{\lambda \rightarrow \infty} \frac{1}{\#\{j : \lambda_j \leq \lambda\}} \sum_{j : \lambda_j \leq \lambda} \left| \int_Y a \cdot |\psi_j|^2 \, d\text{Vol} - \int_Y a \, d\text{Vol} \right|^2 = 0.$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $|\psi_j|^2 d\text{Vol}$ and $d\text{Vol}$ weakly (integrate against test function)
- Interpretations:
 - ➊ Generic high energy quantum particles equidistribute.
 - ➋ Generic bounded energy quantum particles equidistribute as $\hbar \rightarrow 0$.

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)

Let $a \in C^\infty(Y)$. Then

$$\lim_{\lambda \rightarrow \infty} \frac{1}{\#\{j : \lambda_j \leq \lambda\}} \sum_{j : \lambda_j \leq \lambda} \left| \int_Y a \cdot |\psi_j|^2 \, d\text{Vol} - \int_Y a \, d\text{Vol} \right|^2 = 0.$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $|\psi_j|^2 d\text{Vol}$ and $d\text{Vol}$ weakly (integrate against test function)
- Interpretations:
 - Generic high energy quantum particles equidistribute.
 - Generic bounded energy quantum particles equidistribute as $\hbar \rightarrow 0$.

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)

Let $a \in C^\infty(Y)$. Then

$$\lim_{\lambda \rightarrow \infty} \frac{1}{\#\{j : \lambda_j \leq \lambda\}} \sum_{j : \lambda_j \leq \lambda} \left| \int_Y a \cdot |\psi_j|^2 \, d\text{Vol} - \int_Y a \, d\text{Vol} \right|^2 = 0.$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $|\psi_j|^2 d\text{Vol}$ and $d\text{Vol}$ weakly (integrate against test function)
- Interpretations:
 - ① Generic high energy quantum particles equidistribute.
 - ② Generic bounded energy quantum particles equidistribute as $h \rightarrow 0$.

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)

Let $a \in C^\infty(Y)$. Then

$$\lim_{\lambda \rightarrow \infty} \frac{1}{\#\{j : \lambda_j \leq \lambda\}} \sum_{j : \lambda_j \leq \lambda} \left| \int_Y a \cdot |\psi_j|^2 \, d\text{Vol} - \int_Y a \, d\text{Vol} \right|^2 = 0.$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $|\psi_j|^2 d\text{Vol}$ and $d\text{Vol}$ weakly (integrate against test function)
- Interpretations:
 - ① Generic high energy quantum particles equidistribute.
 - ② Generic bounded energy quantum particles equidistribute as $\hbar \rightarrow 0$.

Visualization of quantum ergodicity

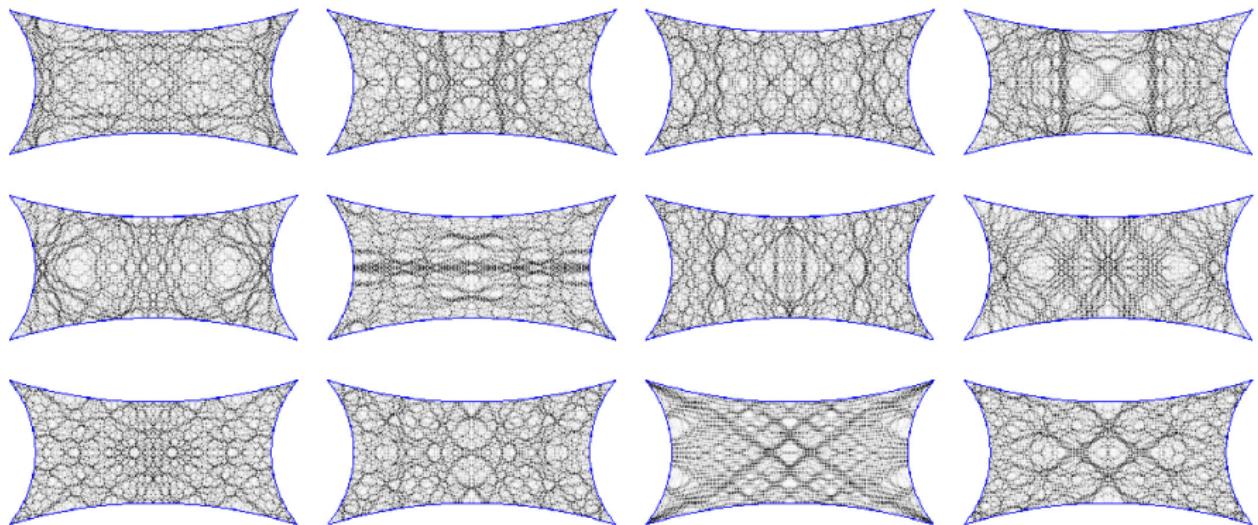
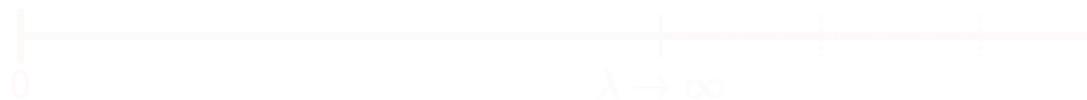


Figure: Image made by Alex Barnett

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:

fix the manifold & vary the spectral window



- QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:

fix the manifold & vary the spectral window

- QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:

fix the manifold & vary the spectral window

- QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:

fix the manifold & vary the spectral window

- QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:

fix the manifold & vary the spectral window

- QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold

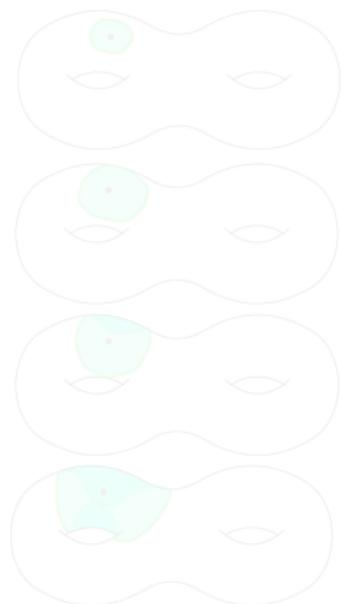
Benjamini-Schramm convergence

(Y_n) Benjamini-Schramm converges to \mathbb{H} if, for every $R > 0$,

$$\lim_{n \rightarrow \infty} \frac{\text{Vol}(\{y \in Y_n : \text{InjRad}_{Y_n}(y) \leq R\})}{\text{Vol}(Y_n)} = 0.$$

Interpretation: most points have arbitrarily large injectivity radius

Spectrum of Δ on \mathbb{H} is $[\frac{1}{4}, \infty)$.



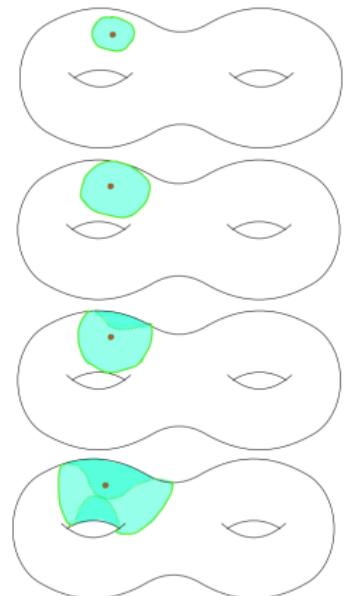
Benjamini-Schramm convergence

(Y_n) Benjamini-Schramm converges to \mathbb{H} if, for every $R > 0$,

$$\lim_{n \rightarrow \infty} \frac{\text{Vol}(\{y \in Y_n : \text{InjRad}_{Y_n}(y) \leq R\})}{\text{Vol}(Y_n)} = 0.$$

Interpretation: most points have arbitrarily large injectivity radius

Spectrum of Δ on \mathbb{H} is $[\frac{1}{4}, \infty)$.



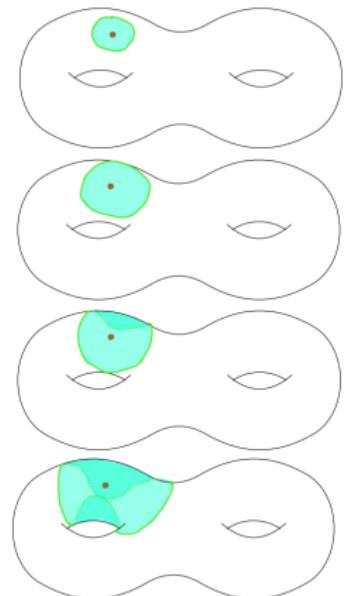
Benjamini-Schramm convergence

(Y_n) Benjamini-Schramm converges to \mathbb{H} if, for every $R > 0$,

$$\lim_{n \rightarrow \infty} \frac{\text{Vol}(\{y \in Y_n : \text{InjRad}_{Y_n}(y) \leq R\})}{\text{Vol}(Y_n)} = 0.$$

Interpretation: most points have arbitrarily large injectivity radius

Spectrum of Δ on \mathbb{H} is $[\frac{1}{4}, \infty)$.



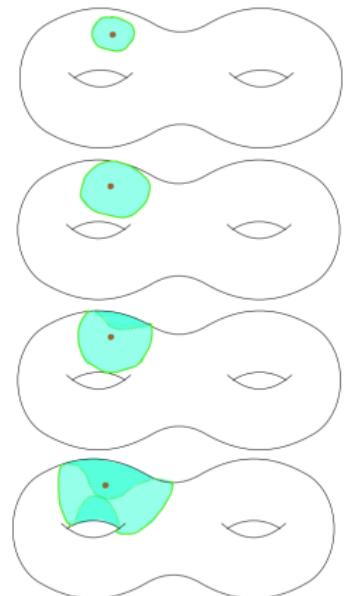
Benjamini-Schramm convergence

(Y_n) Benjamini-Schramm converges to \mathbb{H} if, for every $R > 0$,

$$\lim_{n \rightarrow \infty} \frac{\text{Vol}(\{y \in Y_n : \text{InjRad}_{Y_n}(y) \leq R\})}{\text{Vol}(Y_n)} = 0.$$

Interpretation: most points have arbitrarily large injectivity radius

Spectrum of Δ on \mathbb{H} is $[\frac{1}{4}, \infty)$.



QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j: \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j: \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j: \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y_n) is a sequence of compact hyperbolic surfaces s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$.
- ② Uniform spectral gap: $\lambda_1^{(n)}$ bounded away from 0 for all n .
- ③ Uniform discreteness: $\text{InjRad}(Y_n)$ bounded away from 0 for all n .

Let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions for Δ acting on $L^2(Y_n)$ with eigenvalues $0 = \lambda_0^{(n)} \leq \lambda_1^{(n)} \leq \dots$. Let $\mathcal{I} \subset (\frac{1}{4}, \infty)$ be a compact subinterval. Let $a_n \in L^\infty(Y_n)$ with uniformly bounded L^∞ -norm. Then

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j: \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Real and p -adic (locally) symmetric spaces

	rank one	higher rank
archimedean	hyperbolic surfaces	symmetric spaces
non-archimedean	regular graphs	Bruhat-Tits buildings

Real and p -adic (locally) symmetric spaces

	rank one	higher rank
archimedean	hyperbolic surfaces	symmetric spaces
non-archimedean	regular graphs	Bruhat-Tits buildings

Real and p -adic (locally) symmetric spaces

	rank one	higher rank
archimedean	hyperbolic surfaces	symmetric spaces
non-archimedean	regular graphs	Bruhat-Tits buildings

Real and p -adic (locally) symmetric spaces

	rank one	higher rank
archimedean	hyperbolic surfaces	symmetric spaces
non-archimedean	regular graphs	Bruhat-Tits buildings

Quantization in higher rank

rank one \rightarrow geod. flow ergodic
(\mathbb{R} -action) \rightarrow QE involves Δ

higher rank \rightarrow geod. flow NOT ergodic
(BUT ergodic \mathbb{R}^k -action) \rightarrow QE involves k operators

Quantization in higher rank

rank one \rightarrow geod. flow ergodic
(\mathbb{R} -action) \rightarrow QE involves Δ

higher rank \rightarrow geod. flow NOT ergodic
(BUT ergodic \mathbb{R}^k -action) \rightarrow QE involves k operators

Quantization in higher rank

rank one \rightarrow geod. flow ergodic
(\mathbb{R} -action) \rightarrow QE involves Δ

higher rank \rightarrow geod. flow NOT ergodic
(BUT ergodic \mathbb{R}^k -action) \rightarrow QE involves k operators

Quantization in higher rank

rank one \rightarrow geod. flow ergodic
(\mathbb{R} -action) \rightarrow QE involves Δ

higher rank \rightarrow geod. flow NOT ergodic
(BUT ergodic \mathbb{R}^k -action) \rightarrow QE involves k operators

Symmetric spaces

- $G = \text{semisimple Lie group over } \mathbb{R}$ (w/o compact factors)
- X is associated Riemannian manifold called *symmetric space*
- $X = G/K$ with K a maximal compact subgroup
- $D(G, K) = G\text{-invariant differential operators on } X$
- Fact: $D(G, K)$ generated by k operators

$$G = \text{SL}(2, \mathbb{R})$$

$$X = \mathbb{H}$$

$$K = \text{SO}(2)$$

$$D(G, K) = \text{algebra generated by } \Delta$$

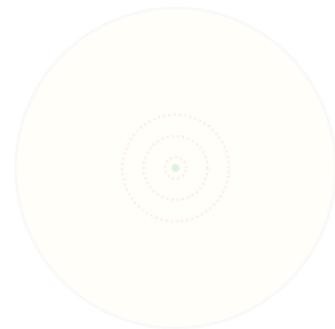


Figure: Δ closely related to averaging over spheres in \mathbb{H}

Symmetric spaces

- G = semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called *symmetric space*
- $X = G/K$ with K a maximal compact subgroup
- $D(G, K) = G$ -invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators

$$G = \mathrm{SL}(2, \mathbb{R})$$

$$X = \mathbb{H}$$

$$K = \mathrm{SO}(2)$$

$$D(G, K) = \text{algebra generated by } \Delta$$

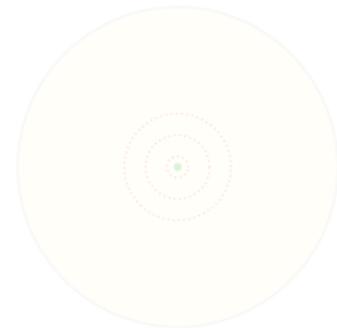


Figure: Δ closely related to averaging over spheres in \mathbb{H}

Symmetric spaces

- G = semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called *symmetric space*
- $X = G/K$ with K a maximal compact subgroup
- $D(G, K) = G$ -invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators

$$G = \mathrm{SL}(2, \mathbb{R})$$

$$X = \mathbb{H}$$

$$K = \mathrm{SO}(2)$$

$$D(G, K) = \text{algebra generated by } \Delta$$

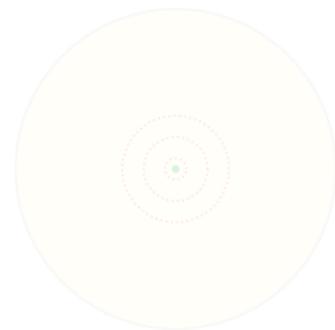


Figure: Δ closely related to averaging over spheres in \mathbb{H}

Symmetric spaces

- G = semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called *symmetric space*
- $X = G/K$ with K a maximal compact subgroup
- $D(G, K) = G$ -invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators

$$G = \mathrm{SL}(2, \mathbb{R})$$

$$X = \mathbb{H}$$

$$K = \mathrm{SO}(2)$$

$$D(G, K) = \text{algebra generated by } \Delta$$

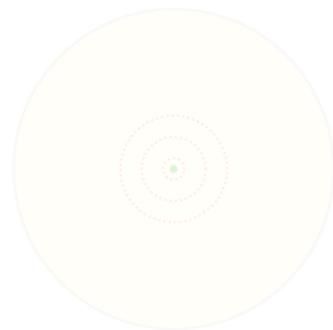


Figure: Δ closely related to averaging over spheres in \mathbb{H}

Symmetric spaces

- G = semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called *symmetric space*
- $X = G/K$ with K a maximal compact subgroup
- $D(G, K) = G$ -invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators

$$G = \mathrm{SL}(2, \mathbb{R})$$

$$X = \mathbb{H}$$

$$K = \mathrm{SO}(2)$$

$$D(G, K) = \text{algebra generated by } \Delta$$

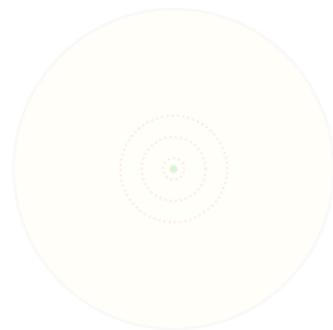


Figure: Δ closely related to averaging over spheres in \mathbb{H}

Symmetric spaces

- G = semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called *symmetric space*
- $X = G/K$ with K a maximal compact subgroup
- $D(G, K) = G$ -invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators

$$G = \mathrm{SL}(2, \mathbb{R})$$

$$X = \mathbb{H}$$

$$K = \mathrm{SO}(2)$$

$$D(G, K) = \text{algebra generated by } \Delta$$

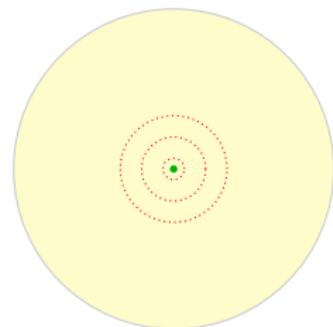


Figure: Δ closely related to averaging over spheres in \mathbb{H}

Bruhat-Tits buildings

- G = semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called *Bruhat-Tits building*
- $\mathcal{B} \approx G/K$ with K a hyperspecial maximal compact subgroup
- $H(G, K) \approx G$ -invariant geometric operators (spherical Hecke algebra)
- Fact: $H(G, K)$ generated by k operators

$$G = \mathrm{PGL}(2, \mathbb{Q}_p)$$

\mathcal{B} = infinite $(p+1)$ -regular tree

G/K = vertices of \mathcal{B}

$$K = \mathrm{PGL}(2, \mathbb{Z}_p)$$

$H(G, K) = \text{alg. gen.'d by adj. op. } \mathcal{A}$

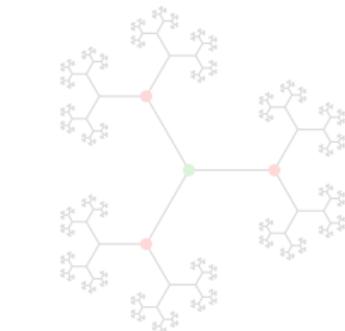


Figure: Adjacency operator \mathcal{A} on tree involves summing over sphere of radius 1

Bruhat-Tits buildings

- G = semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called *Bruhat-Tits building*
- $\mathcal{B} \approx G/K$ with K a hyperspecial maximal compact subgroup
- $H(G, K) \approx G$ -invariant geometric operators (spherical Hecke algebra)
- Fact: $H(G, K)$ generated by k operators

$$G = \mathrm{PGL}(2, \mathbb{Q}_p)$$

\mathcal{B} = infinite $(p+1)$ -regular tree

G/K = vertices of \mathcal{B}

$$K = \mathrm{PGL}(2, \mathbb{Z}_p)$$

$H(G, K) = \text{alg. gen.'d by adj. op. } \mathcal{A}$

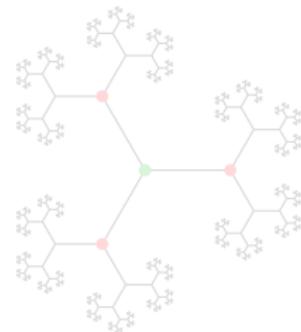


Figure: Adjacency operator \mathcal{A} on tree involves summing over sphere of radius 1

Bruhat-Tits buildings

- G = semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called *Bruhat-Tits building*
- $\mathcal{B} \approx G/K$ with K a hyperspecial maximal compact subgroup
- $H(G, K) \approx G$ -invariant geometric operators (spherical Hecke algebra)
- Fact: $H(G, K)$ generated by k operators

$$G = \mathrm{PGL}(2, \mathbb{Q}_p)$$

\mathcal{B} = infinite $(p+1)$ -regular tree

G/K = vertices of \mathcal{B}

$$K = \mathrm{PGL}(2, \mathbb{Z}_p)$$

$H(G, K) = \text{alg. gen.'d by adj. op. } \mathcal{A}$

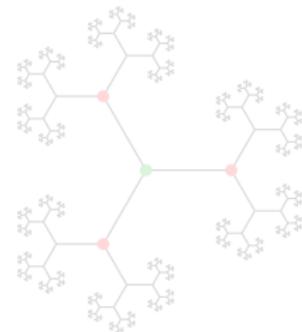


Figure: Adjacency operator \mathcal{A} on tree involves summing over sphere of radius 1

Bruhat-Tits buildings

- G = semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called *Bruhat-Tits building*
- $\mathcal{B} \approx G/K$ with K a hyperspecial maximal compact subgroup
- $H(G, K) \approx G$ -invariant geometric operators (spherical Hecke algebra)
- Fact: $H(G, K)$ generated by k operators

$$G = \mathrm{PGL}(2, \mathbb{Q}_p)$$

\mathcal{B} = infinite $(p+1)$ -regular tree

G/K = vertices of \mathcal{B}

$$K = \mathrm{PGL}(2, \mathbb{Z}_p)$$

$H(G, K) = \text{alg. gen.'d by adj. op. } \mathcal{A}$

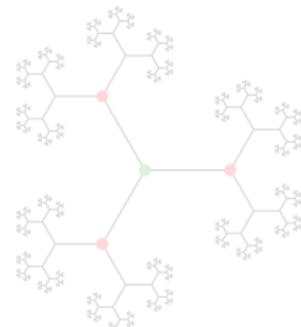


Figure: Adjacency operator \mathcal{A} on tree involves summing over sphere of radius 1

Bruhat-Tits buildings

- G = semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called *Bruhat-Tits building*
- $\mathcal{B} \approx G/K$ with K a hyperspecial maximal compact subgroup
- $H(G, K) \approx G$ -invariant geometric operators (spherical Hecke algebra)
- Fact: $H(G, K)$ generated by k operators

$$G = \mathrm{PGL}(2, \mathbb{Q}_p)$$

\mathcal{B} = infinite $(p+1)$ -regular tree

G/K = vertices of \mathcal{B}

$$K = \mathrm{PGL}(2, \mathbb{Z}_p)$$

$H(G, K) = \text{alg. gen.'d by adj. op. } \mathcal{A}$

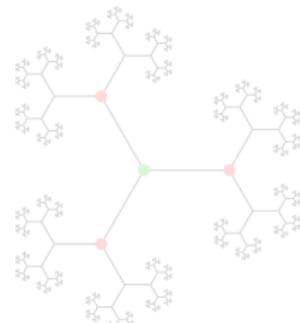


Figure: Adjacency operator \mathcal{A} on tree involves summing over sphere of radius 1

Bruhat-Tits buildings

- G = semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called *Bruhat-Tits building*
- $\mathcal{B} \approx G/K$ with K a hyperspecial maximal compact subgroup
- $H(G, K) \approx G$ -invariant geometric operators (spherical Hecke algebra)
- Fact: $H(G, K)$ generated by k operators

$$G = \mathrm{PGL}(2, \mathbb{Q}_p)$$

\mathcal{B} = infinite $(p+1)$ -regular tree

G/K = vertices of \mathcal{B}

$$K = \mathrm{PGL}(2, \mathbb{Z}_p)$$

$H(G, K) = \text{alg. gen.'d by adj. op. } \mathcal{A}$

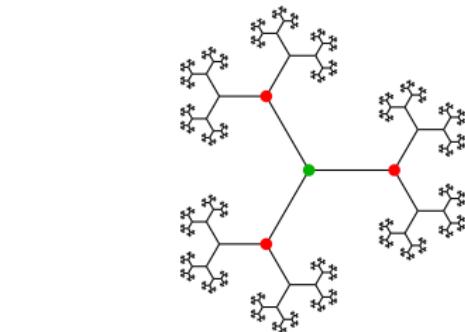


Figure: Adjacency operator \mathcal{A} on tree involves summing over sphere of radius 1

Buildings are composed of branching apartments

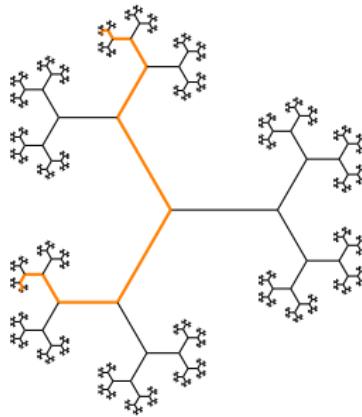
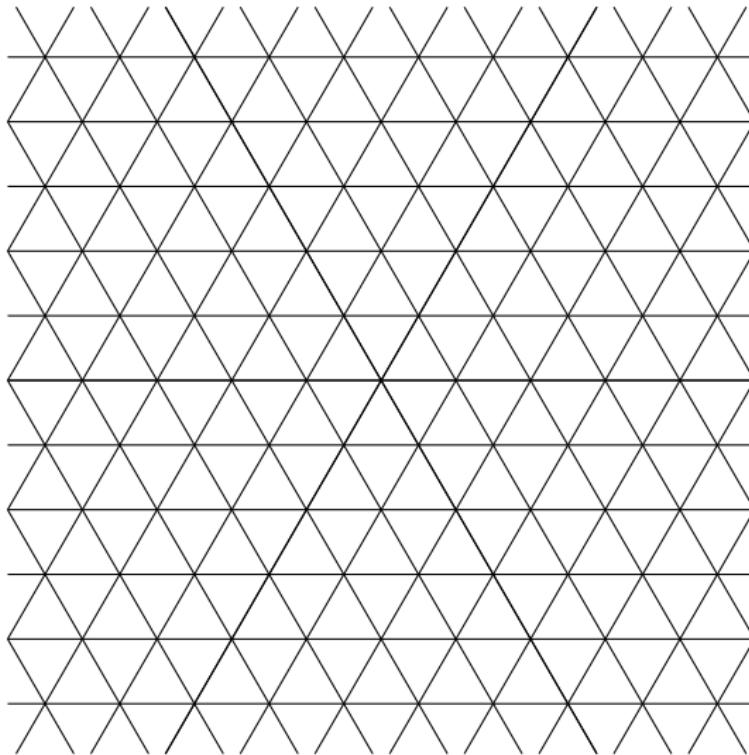
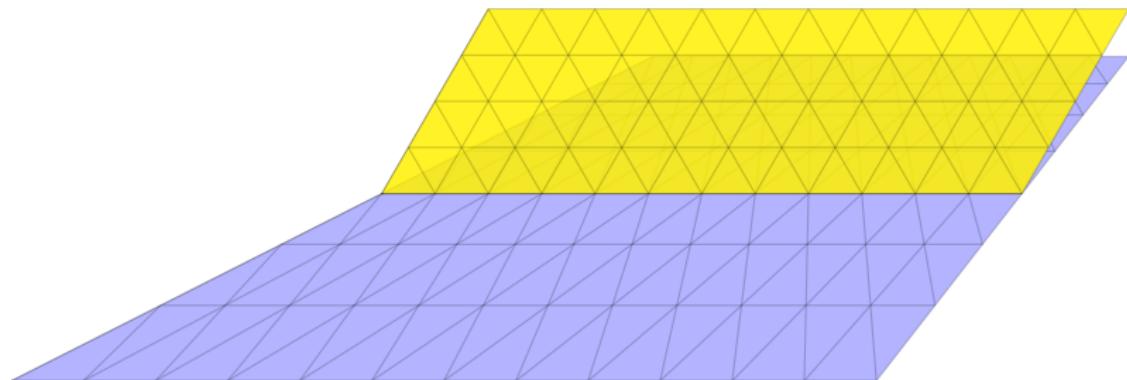


Figure: An apartment in the tree is a bi-infinite geodesic.

An apartment in the Bruhat-Tits building of $SL(3)$



Branching apartments



Visualization of Bruhat-Tits building for $SL(3)$

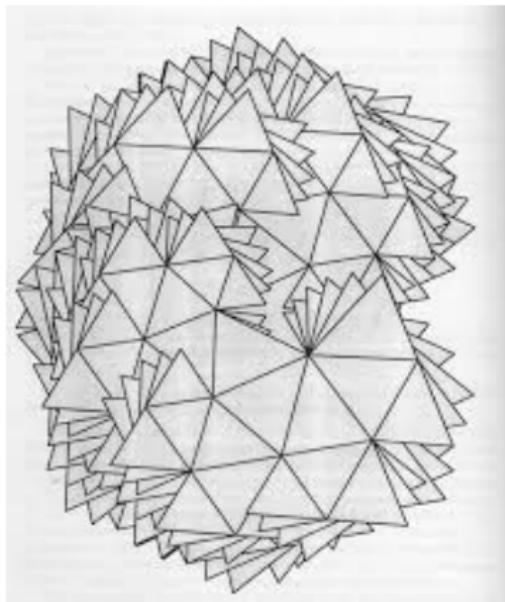
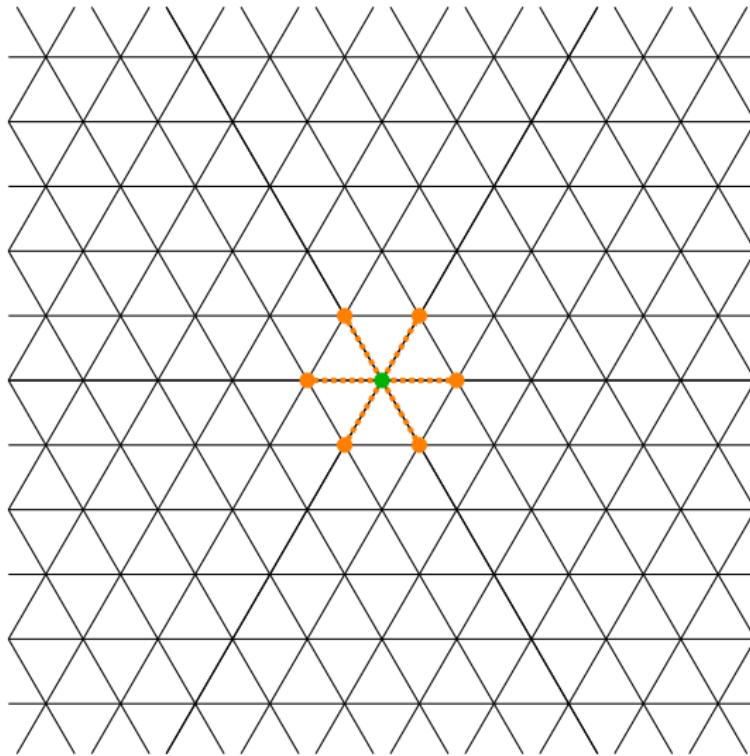
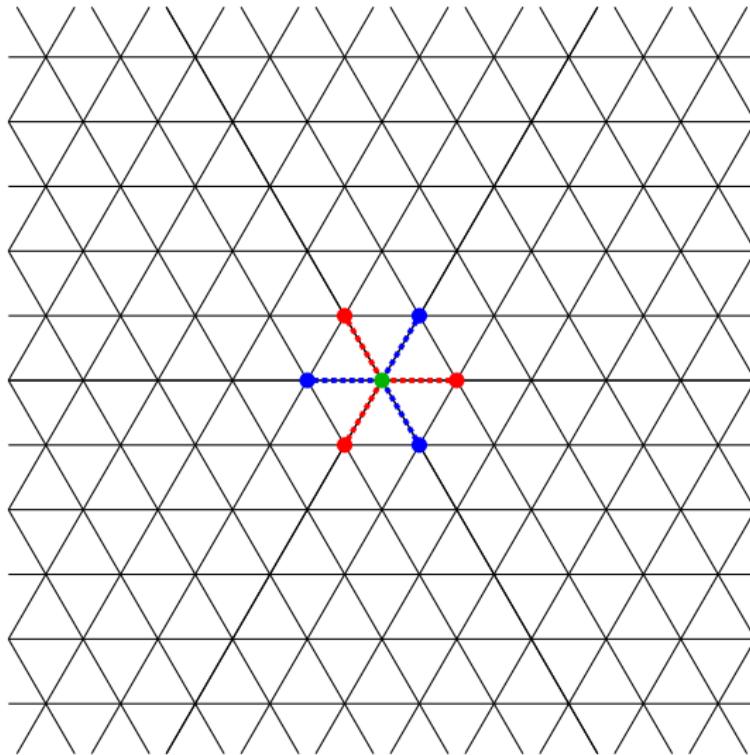


Figure: Image made by Paul Garrett

$H(G, K)$ generated by refinements of adjacency operator



$H(G, K)$ generated by refinements of adjacency operator



Quotients of X and \mathcal{B}

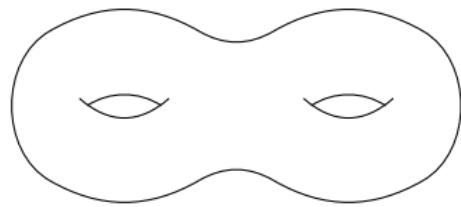
- $\Gamma < G$ cocompact, torsionfree lattice

$\Gamma \backslash G/K$ is $\begin{cases} \text{locally symmetric space (e.g. hyperbolic surface)} \\ \text{finite simplicial complex (e.g. finite regular graph)} \end{cases}$

Quotients of X and \mathcal{B}

- $\Gamma < G$ cocompact, torsionfree lattice

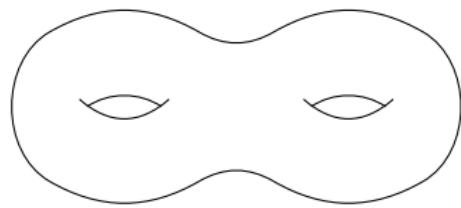
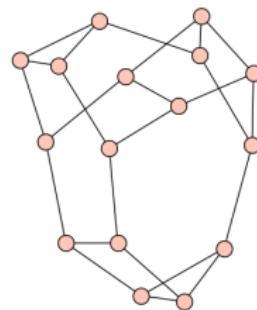
$\Gamma \backslash G/K$ is $\begin{cases} \text{locally symmetric space (e.g. hyperbolic surface)} \\ \text{finite simplicial complex (e.g. finite regular graph)} \end{cases}$



Quotients of X and \mathcal{B}

- $\Gamma < G$ cocompact, torsionfree lattice

$\Gamma \backslash G/K$ is $\begin{cases} \text{locally symmetric space (e.g. hyperbolic surface)} \\ \text{finite simplicial complex (e.g. finite regular graph)} \end{cases}$



Joint eigenfunctions and spectral parameters

- Let \mathcal{C} = either $D(G, K)$ or $H(G, K)$
- \mathcal{C} generated by k operators A_1, \dots, A_k

$$\mathcal{C} \cap L^2(\Gamma \backslash G / K) = \bigoplus_j \mathbb{C} \phi_j \quad (\text{joint eigenfunctions})$$

$\nu_j = k$ -tuple of eigenvalues (spectral parameter)

Joint eigenfunctions and spectral parameters

- Let \mathcal{C} = either $D(G, K)$ or $H(G, K)$
- \mathcal{C} generated by k operators A_1, \dots, A_k

$$\mathcal{C} \curvearrowright L^2(\Gamma \backslash G / K) = \bigoplus_j \mathbb{C}\psi_j \quad (\text{joint eigenfunctions})$$

ν_j = k -tuple of eigenvalues (spectral parameter)

Joint eigenfunctions and spectral parameters

- Let \mathcal{C} = either $D(G, K)$ or $H(G, K)$
- \mathcal{C} generated by k operators A_1, \dots, A_k

$$\mathcal{C} \cap L^2(\Gamma \backslash G / K) = \bigoplus_j \mathbb{C} \psi_j \text{ (joint eigenfunctions)}$$

ν_j = k -tuple of eigenvalues (spectral parameter)

Joint eigenfunctions and spectral parameters

- Let \mathcal{C} = either $D(G, K)$ or $H(G, K)$
- \mathcal{C} generated by k operators A_1, \dots, A_k

$$\mathcal{C} \cap L^2(\Gamma \backslash G / K) = \bigoplus_j \mathbb{C} \psi_j \text{ (joint eigenfunctions)}$$

ν_j = k -tuple of eigenvalues (spectral parameter)

Tempered spectrum

$$\{k\text{-tuples}\} \leftrightarrow \left\{ \begin{array}{l} \text{irreps of } \mathcal{C} \\ (\text{all 1-dim.}) \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{admissible irreps of } G \\ \text{with } K\text{-fixed vector} \\ (\text{spherical repns}) \end{array} \right\}$$

- Tempered spectrum:

$$\Omega_{\text{temp}}^+ \leftrightarrow \left\{ \begin{array}{l} \text{spectrum of} \\ \mathcal{C} \curvearrowright L^2(G/K) \\ \text{universal cover} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{spherical repns} \\ \text{in } L^2(G) \end{array} \right\}$$

Figure: Ω_{temp}^+ for Δ on \mathbb{H} is $[1/4, \infty)$

Figure: Ω_{temp}^+ for Δ on $(q+1)$ -regular tree is $[-2\sqrt{q}, 2\sqrt{q}]$

Tempered spectrum

$$\{k\text{-tuples}\} \leftrightarrow \left\{ \begin{array}{l} \text{irreps of } \mathcal{C} \\ (\text{all 1-dim.}) \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{admissible irreps of } G \\ \text{with } K\text{-fixed vector} \\ (\text{spherical repns}) \end{array} \right\}$$

- Tempered spectrum:

$$\Omega_{\text{temp}}^+ \leftrightarrow \left\{ \begin{array}{l} \text{spectrum of} \\ \mathcal{C} \curvearrowright L^2(G/K) \\ \text{universal cover} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{spherical repns} \\ \text{in } L^2(G) \end{array} \right\}$$

Figure: Ω_{temp}^+ for Δ on \mathbb{H} is $[1/4, \infty)$

Figure: Ω_{temp}^+ for Δ on $(q+1)$ -regular tree is $[-2\sqrt{q}, 2\sqrt{q}]$

Tempered spectrum

$$\{k\text{-tuples}\} \leftrightarrow \left\{ \begin{array}{l} \text{irreps of } \mathcal{C} \\ (\text{all 1-dim.}) \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{admissible irreps of } G \\ \text{with } K\text{-fixed vector} \\ (\text{spherical repns}) \end{array} \right\}$$

- Tempered spectrum:

$$\Omega_{\text{temp}}^+ \leftrightarrow \left\{ \begin{array}{l} \text{spectrum of} \\ \mathcal{C} \curvearrowright L^2(G/K) \\ \text{universal cover} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{spherical repns} \\ \text{in } L^2(G) \end{array} \right\}$$

Figure: Ω_{temp}^+ for Δ on \mathbb{H} is $[1/4, \infty)$

Figure: Ω_{temp}^+ for \mathcal{A} on $(q+1)$ -regular tree is $[-2\sqrt{q}, 2\sqrt{q}]$

Tempered spectrum

$$\{k\text{-tuples}\} \leftrightarrow \left\{ \begin{array}{l} \text{irreps of } \mathcal{C} \\ (\text{all 1-dim.}) \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{admissible irreps of } G \\ \text{with } K\text{-fixed vector} \\ (\text{spherical repns}) \end{array} \right\}$$

- Tempered spectrum:

$$\Omega_{\text{temp}}^+ \leftrightarrow \left\{ \begin{array}{l} \text{spectrum of} \\ \mathcal{C} \curvearrowright L^2(G/K) \\ \text{universal cover} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{spherical repns} \\ \text{in } L^2(G) \end{array} \right\}$$

Figure: Ω_{temp}^+ for Δ on \mathbb{H} is $[1/4, \infty)$

Figure: Ω_{temp}^+ for \mathcal{A} on $(q+1)$ -regular tree is $[-2\sqrt{q}, 2\sqrt{q}]$

Tempered spectrum

$$\{k\text{-tuples}\} \leftrightarrow \left\{ \begin{array}{l} \text{irreps of } \mathcal{C} \\ (\text{all 1-dim.}) \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{admissible irreps of } G \\ \text{with } K\text{-fixed vector} \\ (\text{spherical repns}) \end{array} \right\}$$

- Tempered spectrum:

$$\Omega_{\text{temp}}^+ \leftrightarrow \left\{ \begin{array}{l} \text{spectrum of} \\ \mathcal{C} \curvearrowright L^2(G/K) \\ \text{universal cover} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{spherical repns} \\ \text{in } L^2(G) \end{array} \right\}$$

Figure: Ω_{temp}^+ for Δ on \mathbb{H} is $[1/4, \infty)$

Figure: Ω_{temp}^+ for \mathcal{A} on $(q+1)$ -regular tree is $[-2\sqrt{q}, 2\sqrt{q}]$

Tempered spectrum

$$\{k\text{-tuples}\} \leftrightarrow \left\{ \begin{array}{l} \text{irreps of } \mathcal{C} \\ (\text{all 1-dim.}) \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{admissible irreps of } G \\ \text{with } K\text{-fixed vector} \\ (\text{spherical repns}) \end{array} \right\}$$

- Tempered spectrum:

$$\Omega_{\text{temp}}^+ \leftrightarrow \left\{ \begin{array}{l} \text{spectrum of} \\ \mathcal{C} \curvearrowright L^2(G/K) \\ \text{universal cover} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{spherical repns} \\ \text{in } L^2(G) \end{array} \right\}$$

Figure: Ω_{temp}^+ for Δ on \mathbb{H} is $[1/4, \infty)$

Figure: Ω_{temp}^+ for \mathcal{A} on $(q+1)$ -regular tree is $[-2\sqrt{q}, 2\sqrt{q}]$

BS convergence implies Plancherel convergence

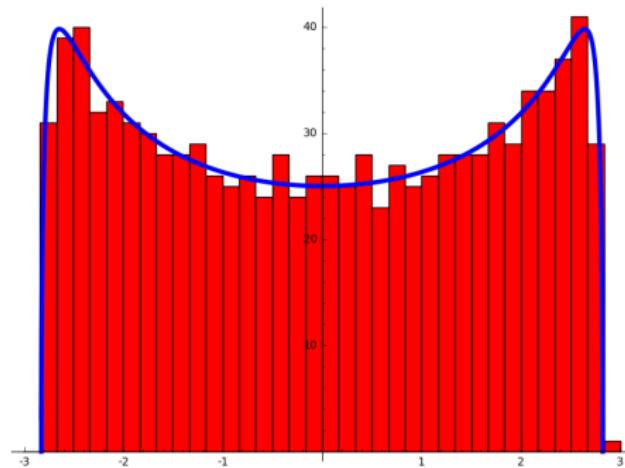
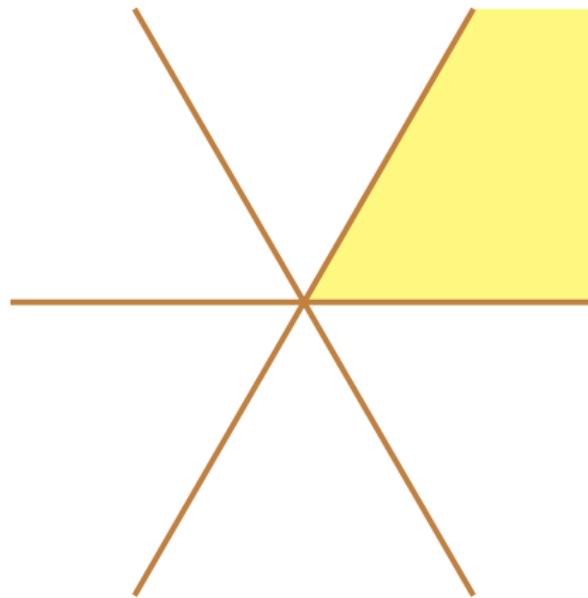


Figure: Distribution of eigenvalues for large random 3-regular graph

$$\frac{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}}{\text{Vol}(Y_n)} \rightarrow \mu(\mathcal{I})$$

Tempered spectrum for symmetric spaces

- For symmetric spaces, the tempered spectrum is parametrized by \mathfrak{a}^*/W , i.e. a Weyl chamber.



Framework for QE in the BS limit

Suppose $Y_n = \Gamma_n \backslash \mathbb{H}$ with Γ_n cocompact, torsionfree lattices s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$
- ② Uniform spectral gap for $\Delta \curvearrowright L^2(Y_n)$
- ③ Uniform discreteness

For each Y_n let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^2(Y_n)$ with associated eigenvalues $\lambda_j^{(n)}$. Let $\mathcal{I} \subset (1/4, \infty)$ be a compact interval. Let $a_n \in L^\infty(Y_n)$ with uniform L^∞ -bound. Then we expect

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Framework for QE in the BS limit

$$\Gamma_n \backslash G/K$$

Suppose $Y_n = \Gamma_n \backslash \mathbb{H}$ with Γ_n cocompact, torsionfree lattices s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}$
- ② Uniform spectral gap for $\Delta \curvearrowright L^2(Y_n)$
- ③ Uniform discreteness

For each Y_n let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^2(Y_n)$ with associated eigenvalues $\lambda_j^{(n)}$. Let $\mathcal{I} \subset (1/4, \infty)$ be a compact interval. Let $a_n \in L^\infty(Y_n)$ with uniform L^∞ -bound. Then we expect

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j: \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Framework for QE in the BS limit

$$\Gamma_n \backslash G/K$$

Suppose $Y_n = \Gamma_n \backslash \mathbb{H}$ with Γ_n cocompact, torsionfree lattices s.t.

- ① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}^{G/K}$
- ② Uniform spectral gap for $\Delta \curvearrowright L^2(Y_n)$
- ③ Uniform discreteness

For each Y_n let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^2(Y_n)$ with associated eigenvalues $\lambda_j^{(n)}$. Let $\mathcal{I} \subset (1/4, \infty)$ be a compact interval. Let $a_n \in L^\infty(Y_n)$ with uniform L^∞ -bound. Then we expect

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Framework for QE in the BS limit

$$\Gamma_n \backslash G/K$$

Suppose $Y_n = \Gamma_n \backslash \mathbb{H}$ with Γ_n cocompact, torsionfree lattices s.t.

① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}^{G/K}$

② Uniform spectral gap for $\Delta \curvearrowright L^2(Y_n)$

③ Uniform discreteness

For each Y_n let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^2(Y_n)$ with associated eigenvalues $\lambda_j^{(n)}$. Let $\mathcal{I} \subset (1/4, \infty)$ be a compact interval. Let $a_n \in L^\infty(Y_n)$ with uniform L^∞ -bound. Then we expect

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Framework for QE in the BS limit

$$\Gamma_n \backslash G/K$$

Suppose $Y_n = \Gamma_n \backslash \mathbb{H}$ with Γ_n cocompact, torsionfree lattices s.t.

① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}^{G/K}$

② Uniform spectral gap for $\Delta \sim L^2(Y_n)$

③ Uniform discreteness

For each Y_n let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions of $\Delta \sim L^2(Y_n)$ with associated eigenvalues $\lambda_j^{(n)}$. Let $\mathcal{I} \subset (1/4, \infty)$ be a compact interval. Let $a_n \in L^\infty(Y_n)$ with uniform L^∞ -bound. Then we expect

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j: \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Framework for QE in the BS limit

$$\Gamma_n \backslash G/K$$

Suppose $Y_n = \Gamma_n \backslash \mathbb{H}$ with Γ_n cocompact, torsionfree lattices s.t.

① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H} \backslash G/K$

② Uniform spectral gap for $\Delta \curvearrowright L^2(Y_n)$

③ Uniform discreteness

For each Y_n let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$

associated eigenvalues $\lambda_j^{(n)}$. Let $\mathcal{I} \subset (1/4, \infty)$ be a compact interval. Let $a_n \in L^\infty(Y_n)$ with uniform L^∞ -bound. Then we expect

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Framework for QE in the BS limit

$$\Gamma_n \backslash G/K$$

Suppose $Y_n = \Gamma_n \backslash \mathbb{H}$ with Γ_n cocompact, torsionfree lattices s.t.

① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}^{G/K}$

② Uniform spectral gap for $\Delta \curvearrowright L^2(Y_n)$

③ Uniform discreteness

For each Y_n let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$ $\Theta \subset \Omega_{\text{temp}}^+$

associated eigenvalues $\lambda_j^{(n)}$. Let $\mathcal{I} \subset (1/4, \infty)$ be a compact interval. Let $a_n \in L^\infty(Y_n)$ with uniform L^∞ -bound. Then we expect

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Framework for QE in the BS limit

$$\Gamma_n \backslash G/K$$

Suppose $Y_n = \Gamma_n \backslash \mathbb{H}$ with Γ_n cocompact, torsionfree lattices s.t.

① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}^{G/K}$

② Uniform spectral gap for $\Delta \curvearrowright L^2(Y_n)$

③ Uniform discreteness

For each Y_n let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$ $\Theta \subset \Omega_{\text{temp}}^+$ nice subset associated eigenvalues $\lambda_j^{(n)}$. Let $\mathcal{I} \subset (1/4, \infty)$ be a compact interval. Let $a_n \in L^\infty(Y_n)$ with uniform L^∞ -bound. Then we expect

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \lambda_j^{(n)} \in \mathcal{I}\}} \sum_{j : \lambda_j^{(n)} \in \mathcal{I}} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Framework for QE in the BS limit

$$\Gamma_n \backslash G/K$$

Suppose $Y_n = \Gamma_n \backslash \mathbb{H}$ with Γ_n cocompact, torsionfree lattices s.t.

① Benjamini-Schramm convergence: $Y_n \xrightarrow{BS} \mathbb{H}^{G/K}$

② Uniform spectral gap for $\Delta \curvearrowright L^2(Y_n)$

③ Uniform discreteness

For each Y_n let $\{\psi_j^{(n)}\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$

associated eigenvalues $\lambda_j^{(n)}$. Let $\mathcal{I} \subset (1/4, \infty)$ be a compact interval. Let $a_n \in L^\infty(Y_n)$ with uniform L^∞ -bound. Then we expect

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{j : \nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} - \int_{Y_n} a_n \, d\text{Vol} \right|^2 = 0.$$

Preceding literature on QE in the BS limit

- **Anantharaman-Le Masson '15** - set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for regular graphs using *wave propagator* method
- Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces using wave propagator; incorporated an *ergodic theorem of Nevo*
- Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one locally symmetric spaces
- Brumley-Matz '22 - QE in the BS limit for $SL(d, \mathbb{R})/SO(d)$; introduced *polytopal ball averaging operators*; mistake in the *geometric bound*
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to $SL(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the *geometric bound*
- Brumley-Marshall-Matz-P. '25 - fix the mistake for $SL(d, \mathbb{R})$; new method works for all symmetric spaces except for finitely many

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15 - set up the framework for QE in the BS limit and proved it for regular graphs
- **Brooks-Le Masson-Lindenstrauss '16** - reproved QE in the BS limit for regular graphs using *wave propagator* method
- Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces using wave propagator; incorporated an *ergodic theorem of Nevo*
- Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one locally symmetric spaces
- Brumley-Matz '22 - QE in the BS limit for $SL(d, \mathbb{R})/SO(d)$; introduced *polytopal ball averaging operators*; mistake in the *geometric bound*
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to $SL(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the *geometric bound*
- Brumley-Marshall-Matz-P. '25 - fix the mistake for $SL(d, \mathbb{R})$; new method works for all symmetric spaces except for finitely many

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15 - set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for regular graphs using *wave propagator* method
- **Le Masson-Sahlsten '17** - QE in the BS limit for hyperbolic surfaces using wave propagator; incorporated an *ergodic theorem of Nevo*
- Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one locally symmetric spaces
- Brumley-Matz '22 - QE in the BS limit for $SL(d, \mathbb{R})/SO(d)$; introduced *polytopal ball averaging operators*; mistake in the *geometric bound*
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to $SL(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the *geometric bound*
- Brumley-Marshall-Matz-P. '25 - fix the mistake for $SL(d, \mathbb{R})$; new method works for all symmetric spaces except for finitely many

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15 - set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for regular graphs using *wave propagator* method
- Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces using wave propagator; incorporated an *ergodic theorem of Nevo*
- **Abert-Bergeron-Le Masson '18** - QE in the BS limit for rank one locally symmetric spaces
- Brumley-Matz '22 - QE in the BS limit for $SL(d, \mathbb{R})/SO(d)$; introduced *polytopal ball averaging operators*; mistake in the *geometric bound*
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to $SL(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the *geometric bound*
- Brumley-Marshall-Matz-P. '25 - fix the mistake for $SL(d, \mathbb{R})$; new method works for all symmetric spaces except for finitely many

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15 - set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for regular graphs using *wave propagator* method
- Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces using wave propagator; incorporated an *ergodic theorem of Nevo*
- Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one locally symmetric spaces
- **Brumley-Matz '22** - QE in the BS limit for $SL(d, \mathbb{R})/SO(d)$; introduced *polytopal ball averaging operators*; mistake in the *geometric bound*
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to $SL(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the *geometric bound*
- Brumley-Marshall-Matz-P. '25 - fix the mistake for $SL(d, \mathbb{R})$; new method works for all symmetric spaces except for finitely many

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15 - set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for regular graphs using *wave propagator* method
- Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces using wave propagator; incorporated an *ergodic theorem of Nevo*
- Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one locally symmetric spaces
- Brumley-Matz '22 - QE in the BS limit for $SL(d, \mathbb{R})/SO(d)$; introduced *polytopal ball averaging operators*; mistake in the *geometric bound*
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to $SL(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the *geometric bound*
- Brumley-Marshall-Matz-P. '25 - fix the mistake for $SL(d, \mathbb{R})$; new method works for all symmetric spaces except for finitely many

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15 - set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for regular graphs using *wave propagator* method
- Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces using wave propagator; incorporated an *ergodic theorem of Nevo*
- Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one locally symmetric spaces
- Brumley-Matz '22 - QE in the BS limit for $SL(d, \mathbb{R})/SO(d)$; introduced *polytopal ball averaging operators*; mistake in the *geometric bound*
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to $SL(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the *geometric bound*
- **Brumley-Marshall-Matz-P. '25** - fix the mistake for $SL(d, \mathbb{R})$; new method works for all symmetric spaces except for finitely many

Main Theorem (Brumley-Marshall-Matz-P. '25)

Suppose G is a product of non-compact, connected, centerless, simple real Lie groups. Let $X = G/K$ be the symmetric space. Let $\Gamma_n < G$ be a sequence of irreducible, cocompact, uniformly discrete, torsion free lattices. Let $Y_n = \Gamma_n \backslash X$. Let G_1 be a simple factor of G . Assume that

- ① Benjamini-Schramm convergence: $Y_n \rightarrow G/K$.
- ② We have a uniform spectral gap for $G_1 \curvearrowright L_0^2(\Gamma \backslash G)$.
- ③ The indivisible relative roots of G_1 form a root system not of type E_6, E_8, F_4, G_2 (7 exceptions).

Let $\psi_j^{(n)}$ be an ONB of joint eigenfunctions of $D(G, K)$ acting on $L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$. There exists a finite W -invariant set of subspaces $\{P_i\}$ of \mathfrak{a}^* ($= \Omega_{\text{temp}}^+$) such that for any compact $\Theta \subset \mathfrak{a}^* \setminus \bigcup_i P_i$ with non-empty interior and any norm-bounded sequence of $a_n \in L^\infty(Y_n)$,

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{\nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n |\psi_j^{(n)}|^2 d\text{Vol} - \int_{Y_n} a_n d\text{Vol} \right|^2 = 0$$

Main Theorem (Brumley-Marshall-Matz-P. '25)

Suppose G is a product of non-compact, connected, centerless, simple real Lie groups. Let $X = G/K$ be the symmetric space. Let $\Gamma_n < G$ be a sequence of irreducible, cocompact, uniformly discrete, torsion free lattices. Let $Y_n = \Gamma_n \backslash X$. Let G_1 be a simple factor of G . Assume that

- ① Benjamini-Schramm convergence: $Y_n \rightarrow G/K$.
- ② We have a uniform spectral gap for $G_1 \curvearrowright L_0^2(\Gamma \backslash G)$.
- ③ The indivisible relative roots of G_1 form a root system not of type E_6, E_8, F_4, G_2 (7 exceptions).

Let $\psi_j^{(n)}$ be an ONB of joint eigenfunctions of $D(G, K)$ acting on $L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$. There exists a finite W -invariant set of subspaces $\{P_i\}$ of \mathfrak{a}^* ($= \Omega_{\text{temp}}^+$) such that for any compact $\Theta \subset \mathfrak{a}^* \setminus \bigcup_i P_i$ with non-empty interior and any norm-bounded sequence of $a_n \in L^\infty(Y_n)$,

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{\nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n |\psi_j^{(n)}|^2 d\text{Vol} - \int_{Y_n} a_n d\text{Vol} \right|^2 = 0$$

Main Theorem (Brumley-Marshall-Matz-P. '25)

Suppose G is a product of non-compact, connected, centerless, simple real Lie groups. Let $X = G/K$ be the symmetric space. Let $\Gamma_n < G$ be a sequence of irreducible, cocompact, uniformly discrete, torsion free lattices. Let $Y_n = \Gamma_n \backslash X$. Let G_1 be a simple factor of G . Assume that

- ① Benjamini-Schramm convergence: $Y_n \rightarrow G/K$.
- ② We have a uniform spectral gap for $G_1 \curvearrowright L_0^2(\Gamma \backslash G)$.
- ③ The indivisible relative roots of G_1 form a root system not of type E_6, E_8, F_4, G_2 (7 exceptions).

Let $\psi_j^{(n)}$ be an ONB of joint eigenfunctions of $D(G, K)$ acting on $L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$. There exists a finite W -invariant set of subspaces $\{P_i\}$ of \mathfrak{a}^* ($= \Omega_{\text{temp}}^+$) such that for any compact $\Theta \subset \mathfrak{a}^* \setminus \bigcup_i P_i$ with non-empty interior and any norm-bounded sequence of $a_n \in L^\infty(Y_n)$,

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{\nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n |\psi_j^{(n)}|^2 d\text{Vol} - \int_{Y_n} a_n d\text{Vol} \right|^2 = 0$$

Main Theorem (Brumley-Marshall-Matz-P. '25)

Suppose G is a product of non-compact, connected, centerless, simple real Lie groups. Let $X = G/K$ be the symmetric space. Let $\Gamma_n < G$ be a sequence of irreducible, cocompact, uniformly discrete, torsion free lattices. Let $Y_n = \Gamma_n \backslash X$. Let G_1 be a simple factor of G . Assume that

- ① Benjamini-Schramm convergence: $Y_n \rightarrow G/K$.
- ② We have a uniform spectral gap for $G_1 \curvearrowright L_0^2(\Gamma \backslash G)$.
- ③ The indivisible relative roots of G_1 form a root system not of type E_6, E_8, F_4, G_2 (7 exceptions).

Let $\psi_j^{(n)}$ be an ONB of joint eigenfunctions of $D(G, K)$ acting on $L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$. There exists a finite W -invariant set of subspaces $\{P_i\}$ of \mathfrak{a}^* ($= \Omega_{\text{temp}}^+$) such that for any compact $\Theta \subset \mathfrak{a}^* \setminus \bigcup_i P_i$ with non-empty interior and any norm-bounded sequence of $a_n \in L^\infty(Y_n)$,

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{\nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n |\psi_j^{(n)}|^2 d\text{Vol} - \int_{Y_n} a_n d\text{Vol} \right|^2 = 0$$

Main Theorem (Brumley-Marshall-Matz-P. '25)

Suppose G is a product of non-compact, connected, centerless, simple real Lie groups. Let $X = G/K$ be the symmetric space. Let $\Gamma_n < G$ be a sequence of irreducible, cocompact, uniformly discrete, torsion free lattices. Let $Y_n = \Gamma_n \backslash X$. Let G_1 be a simple factor of G . Assume that

- ① Benjamini-Schramm convergence: $Y_n \rightarrow G/K$.
- ② We have a uniform spectral gap for $G_1 \curvearrowright L_0^2(\Gamma \backslash G)$.
- ③ The indivisible relative roots of G_1 form a root system not of type E_6, E_8, F_4, G_2 (7 exceptions).

Let $\psi_j^{(n)}$ be an ONB of joint eigenfunctions of $D(G, K)$ acting on $L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$. There exists a finite W -invariant set of subspaces $\{P_i\}$ of \mathfrak{a}^* ($= \Omega_{\text{temp}}^+$) such that for any compact $\Theta \subset \mathfrak{a}^* \setminus \bigcup_i P_i$ with non-empty interior and any norm-bounded sequence of $a_n \in L^\infty(Y_n)$,

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{\nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n |\psi_j^{(n)}|^2 d\text{Vol} - \int_{Y_n} a_n d\text{Vol} \right|^2 = 0$$

Main Theorem (Brumley-Marshall-Matz-P. '25)

Suppose G is a product of non-compact, connected, centerless, simple real Lie groups. Let $X = G/K$ be the symmetric space. Let $\Gamma_n < G$ be a sequence of irreducible, cocompact, uniformly discrete, torsion free lattices. Let $Y_n = \Gamma_n \backslash X$. Let G_1 be a simple factor of G . Assume that

- ① Benjamini-Schramm convergence: $Y_n \rightarrow G/K$.
- ② We have a uniform spectral gap for $G_1 \curvearrowright L_0^2(\Gamma \backslash G)$.
- ③ The indivisible relative roots of G_1 form a root system not of type E_6, E_8, F_4, G_2 (7 exceptions).

Let $\psi_j^{(n)}$ be an ONB of joint eigenfunctions of $D(G, K)$ acting on $L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$. There exists a finite W -invariant set of subspaces $\{P_i\}$ of \mathfrak{a}^* ($= \Omega_{\text{temp}}^+$) such that for any compact $\Theta \subset \mathfrak{a}^* \setminus \bigcup_i P_i$ with non-empty interior and any norm-bounded sequence of $a_n \in L^\infty(Y_n)$,

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{\nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n |\psi_j^{(n)}|^2 d\text{Vol} - \int_{Y_n} a_n d\text{Vol} \right|^2 = 0$$

Main Theorem (Brumley-Marshall-Matz-P. '25)

Suppose G is a product of non-compact, connected, centerless, simple real Lie groups. Let $X = G/K$ be the symmetric space. Let $\Gamma_n < G$ be a sequence of irreducible, cocompact, uniformly discrete, torsion free lattices. Let $Y_n = \Gamma_n \backslash X$. Let G_1 be a simple factor of G . Assume that

- ① Benjamini-Schramm convergence: $Y_n \rightarrow G/K$.
- ② We have a uniform spectral gap for $G_1 \curvearrowright L_0^2(\Gamma \backslash G)$.
- ③ The indivisible relative roots of G_1 form a root system not of type E_6, E_8, F_4, G_2 (7 exceptions).

Let $\psi_j^{(n)}$ be an ONB of joint eigenfunctions of $D(G, K)$ acting on $L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$. There exists a finite W -invariant set of subspaces $\{P_i\}$ of \mathfrak{a}^* ($= \Omega_{\text{temp}}^+$) such that for any compact $\Theta \subset \mathfrak{a}^* \setminus \bigcup_i P_i$ with non-empty interior and any norm-bounded sequence of $a_n \in L^\infty(Y_n)$,

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{\nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n |\psi_j^{(n)}|^2 d\text{Vol} - \int_{Y_n} a_n d\text{Vol} \right|^2 = 0$$

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15 - set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for regular graphs using **wave propagator** method
- Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces using wave propagator; incorporated an *ergodic theorem of Nevo*
- Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one locally symmetric spaces
- Brumley-Matz '22 - QE in the BS limit for $SL(d, \mathbb{R})/SO(d)$; introduced **polytopal ball averaging operators**; mistake in the geometric bound
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to $SL(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the geometric bound
- Brumley-Marshall-Matz-P. '25 - fix the mistake for $SL(d, \mathbb{R})$; new method works for all symmetric spaces except for finitely many

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15 - set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for regular graphs using wave propagator method
- Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces using wave propagator; incorporated an *ergodic theorem of Nevo*
- Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one locally symmetric spaces
- Brumley-Matz '22 - QE in the BS limit for $SL(d, \mathbb{R})/SO(d)$; introduced polytopal ball averaging operators; mistake in the **geometric bound**
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to $SL(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the **geometric bound**
- Brumley-Marshall-Matz-P. '25 - fix the mistake for $SL(d, \mathbb{R})$; new method works for all symmetric spaces except for finitely many

Main Theorem (Brumley-Marshall-Matz-P. '25)

Suppose G is a product of non-compact, connected, centerless, simple real Lie groups. Let $X = G/K$ be the symmetric space. Let $\Gamma_n < G$ be a sequence of irreducible, cocompact, uniformly discrete, torsion free lattices. Let $Y_n = \Gamma_n \backslash X$. Let G_1 be a simple factor of G . Assume that

- ① Benjamini-Schramm convergence: $Y_n \rightarrow G/K$.
- ② We have a uniform spectral gap for $G_1 \curvearrowright L_0^2(\Gamma \backslash G)$.
- ③ The indivisible relative roots of G_1 form a root system not of type E_6, E_8, F_4, G_2 (7 exceptions).

Let $\psi_j^{(n)}$ be an ONB of joint eigenfunctions of $D(G, K)$ acting on $L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$. There exists a finite W -invariant set of subspaces $\{P_i\}$ of \mathfrak{a}^* ($= \Omega_{\text{temp}}^+$) such that for any compact $\Theta \subset \mathfrak{a}^* \setminus \bigcup_i P_i$ with non-empty interior and any norm-bounded sequence of $a_n \in L^\infty(Y_n)$,

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{\nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n |\psi_j^{(n)}|^2 d\text{Vol} - \int_{Y_n} a_n d\text{Vol} \right|^2 = 0$$

Main Theorem (Brumley-Marshall-Matz-P. '25)

Suppose G is a product of non-compact, connected, centerless, simple real Lie groups. Let $X = G/K$ be the symmetric space. Let $\Gamma_n < G$ be a sequence of irreducible, cocompact, uniformly discrete, torsion free lattices. Let $Y_n = \Gamma_n \backslash X$. Let G_1 be a simple factor of G . Assume that

- ① Benjamini-Schramm convergence: $Y_n \rightarrow G/K$.
- ② We have a uniform spectral gap for $G_1 \curvearrowright L_0^2(\Gamma \backslash G)$.
- ③ The indivisible relative roots of G_1 form a root system not of type E_6, E_8, F_4, G_2 (7 exceptions).

Let $\psi_j^{(n)}$ be an ONB of joint eigenfunctions of $D(G, K)$ acting on $L^2(Y_n)$ with spectral parameters $\nu_j^{(n)}$. There exists a finite W -invariant set of subspaces $\{P_i\}$ of \mathfrak{a}^* ($= \Omega_{\text{temp}}^+$) such that for any compact $\Theta \subset \mathfrak{a}^* \setminus \bigcup_i P_i$ with non-empty interior and any norm-bounded sequence of $a_n \in L^\infty(Y_n)$,

$$\lim_{n \rightarrow \infty} \frac{1}{\#\{\nu_j^{(n)} \in \Theta\}} \sum_{j: \nu_j^{(n)} \in \Theta} \left| \int_{Y_n} a_n |\psi_j^{(n)}|^2 d\text{Vol} - \int_{Y_n} a_n d\text{Vol} \right|^2 = 0$$

Wave propagator to geometric bound

- A_M = wave propagator
 - $U_m \approx$ avg over polytopal ball
 - $B_m(x) =$ polytopal ball of radius m centered at x

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum \left| \langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle \right|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Wave propagator to geometric bound

- A_M = wave propagator
 - $U_m \approx$ avg over polytopal ball
 - $B_m(x) =$ polytopal ball of radius m centered at x

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum \left| \langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle \right|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Wave propagator to geometric bound

- A_M = wave propagator

- $U_m \approx \text{avg over polytopal ball}$
- $B_m(x) = \text{polytopal ball of radius } m \text{ centered at } x$

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum |\langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Wave propagator to geometric bound

- A_M = wave propagator

- $U_m \approx \text{avg over polytopal ball}$
- $B_m(x) = \text{polytopal ball of radius } m \text{ centered at } x$

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum |\langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Wave propagator to geometric bound

- A_M = wave propagator

- $U_m \approx \text{avg over polytopal ball}$
- $B_m(x) = \text{polytopal ball of radius } m \text{ centered at } x$

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum |\langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Analyze kernel function

$$U_m^* \circ a_n \circ U_m$$

integrate a_n over $B_m(x) \cap B_m(y)$

convolution op. assoc.

to $B_m(x) \cap B_m(y)$

Wave propagator to geometric bound

- A_M = wave propagator
 - $U_m \approx \text{avg over polytopal ball}$
 - $B_m(x) = \text{polytopal ball of radius } m \text{ centered at } x$

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum |\langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Analyze kernel function

$$U_m^* \circ a_n \circ U_m$$

integrate a_n over $B_m(x) \cap B_m(y)$

convolution op. assoc.

to $B_m(x) \cap B_m(y)$

Wave propagator to geometric bound

- A_M = wave propagator
 - $U_m \approx \text{avg over polytopal ball}$
 - $B_m(x) = \text{polytopal ball of radius } m \text{ centered at } x$

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum |\langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Analyze kernel function

$$U_m^* \circ a_n \circ U_m$$

integrate a_n over $B_m(x) \cap B_m(y)$

convolution op. assoc.

to $B_m(x) \cap B_m(y)$

Wave propagator to geometric bound

- A_M = wave propagator
 - $U_m \approx \text{avg over polytopal ball}$
 - $B_m(x) = \text{polytopal ball of radius } m \text{ centered at } x$

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum |\langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Analyze kernel function

$$U_m^* \circ a_n \circ U_m$$

integrate a_n over $B_m(x) \cap B_m(y)$

convolution op. assoc.

to $B_m(x) \cap B_m(y)$

Wave propagator to geometric bound

- A_M = wave propagator
 - $U_m \approx \text{avg over polytopal ball}$
 - $B_m(x) = \text{polytopal ball of radius } m \text{ centered at } x$

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum |\langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Analyze kernel function

$U_m^* \circ a_n \circ U_m$
↓
integrate a_n over $B_m(x) \cap B_m(y)$
↓
convolution op. assoc.
to $B_m(x) \cap B_m(y)$

Ergodic theorem of Nevo

norm of
conv. op. $\lesssim \frac{1}{\text{Vol}(B_m(x) \cap B_m(y))^\delta}$

Wave propagator to geometric bound

- A_M = wave propagator
 - $U_m \approx \text{avg over polytopal ball}$
 - $B_m(x) = \text{polytopal ball of radius } m \text{ centered at } x$

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum |\langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Analyze kernel function

$U_m^* \circ a_n \circ U_m$
↓
integrate a_n over $B_m(x) \cap B_m(y)$
↓
convolution op. assoc.
to $B_m(x) \cap B_m(y)$

Ergodic theorem of Nevo

norm of
conv. op. $\lesssim \frac{1}{\text{Vol}(B_m(x) \cap B_m(y))^\delta}$

Wave propagator to geometric bound

- A_M = wave propagator
 - $U_m \approx \text{avg over polytopal ball}$
 - $B_m(x) = \text{polytopal ball of radius } m \text{ centered at } x$

$$\sum \left| \int_{Y_n} a_n \cdot |\psi_j^{(n)}|^2 \, d\text{Vol} \right|^2 = \sum |\langle \psi_j^{(n)}, a_n \cdot \psi_j^{(n)} \rangle|^2 \lesssim \sum_{\text{all } \psi_j^{(n)}} \|A_M \psi_j^{(n)}\|^2$$

Analyze kernel function

$U_m^* \circ a_n \circ U_m$
↓
integrate a_n over $B_m(x) \cap B_m(y)$
↓
convolution op. assoc.
to $B_m(x) \cap B_m(y)$

Ergodic theorem of Nevo

norm of
conv. op. $\lesssim \frac{1}{\text{Vol}(B_m(x) \cap B_m(y))^\delta}$

Geometric bound in rank one

- In rank one, polytopal balls are just metric balls.
- Let $G/K = \mathbb{T}_{q+1}$. Suppose $d(x, y) = r$. Then

$$|B_t(x) \cap B_t(y)| \approx q^{t - \frac{r}{2}}.$$

Geometric bound in rank one

- In rank one, polytopal balls are just metric balls.
- Let $G/K = \mathbb{T}_{q+1}$. Suppose $d(x, y) = r$. Then

$$|B_t(x) \cap B_t(y)| \approx q^{t - \frac{r}{2}}.$$

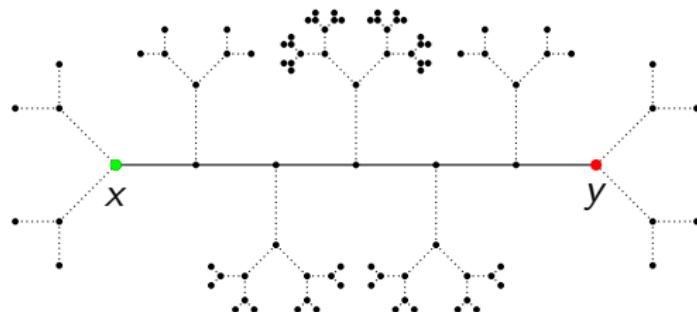


Figure: $B_8(x) \cap B_8(y)$ on 3-regular tree with $d(x, y) = 6$

Geometric bound in rank one

- Let $G/K = \mathbb{H}$. Suppose $d(x, y) = r$. Then

Geometric bound in rank one

- Let $G/K = \mathbb{H}$. Suppose $d(x, y) = r$. Then

$$\text{Vol}(B_t(x) \cap B_t(y)) \approx e^{t - \frac{r}{2}}.$$

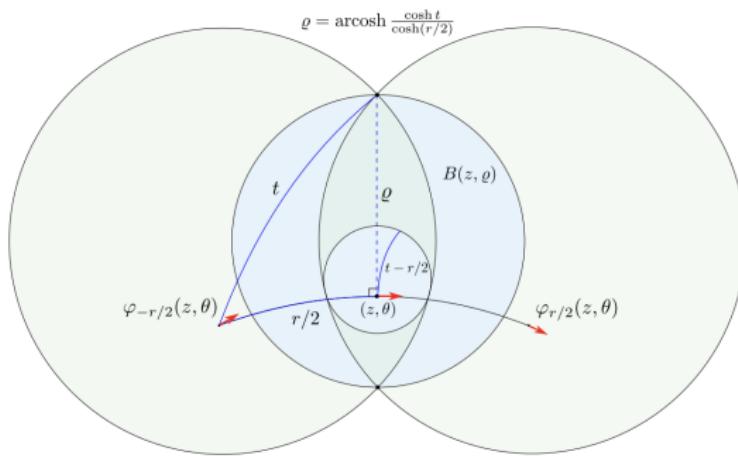


FIGURE 2. The volume of the sets $F_t(r)$ used in the proof of Proposition 4.1 can be controlled by the volume of the balls $B(z, t - r/2)$ and $B(z, \varrho)$, where $\cosh \varrho = \frac{\cosh t}{\cosh(r/2)}$ by the hyperbolic version of Pythagoras' theorem. The volume of both of these balls is $O(e^{t - r/2})$.

Cartan decomposition and relative position

- $G =$ semisimple real Lie group

- Cartan decomposition:

$$G = \bigsqcup_{\lambda \in \mathfrak{a}^+} K e^\lambda K.$$

- Weyl chamber-valued “distance”:

$$d_{\mathfrak{a}^+}(xK, yK) = \lambda \text{ iff } x^{-1}y \in K e^\lambda K$$

- Also have Weyl-chamber valued distance on BT buildings.

Cartan decomposition and relative position

- $G =$ semisimple real Lie group

- Cartan decomposition:

$$G = \bigsqcup_{\lambda \in \mathfrak{a}^+} K e^\lambda K.$$

- Weyl chamber-valued “distance”:

$$d_{\mathfrak{a}^+}(xK, yK) = \lambda \text{ iff } x^{-1}y \in K e^\lambda K$$

- Also have Weyl-chamber valued distance on BT buildings.

Cartan decomposition and relative position

- $G =$ semisimple real Lie group

- Cartan decomposition:

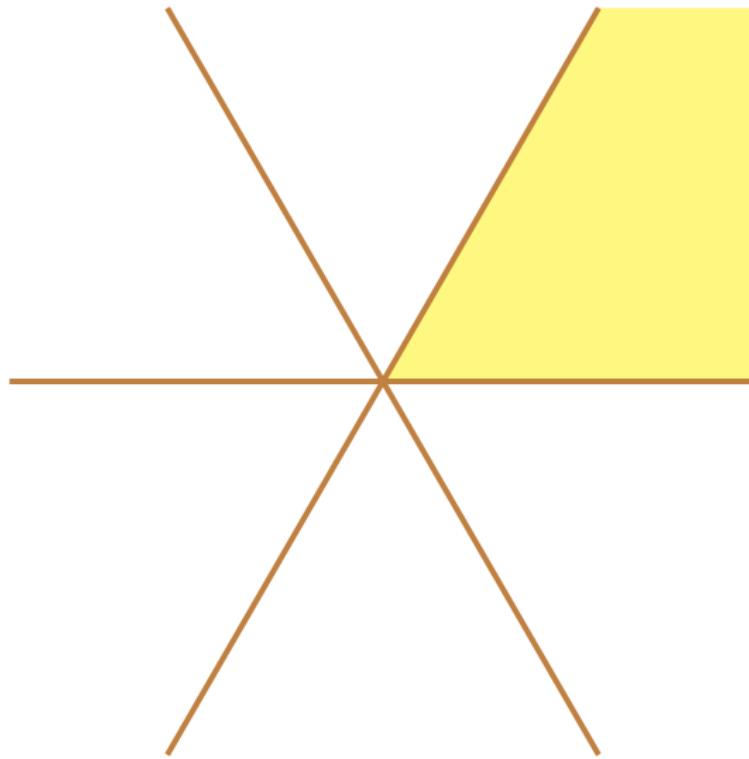
$$G = \bigsqcup_{\lambda \in \mathfrak{a}^+} K e^\lambda K.$$

- Weyl chamber-valued “distance”:

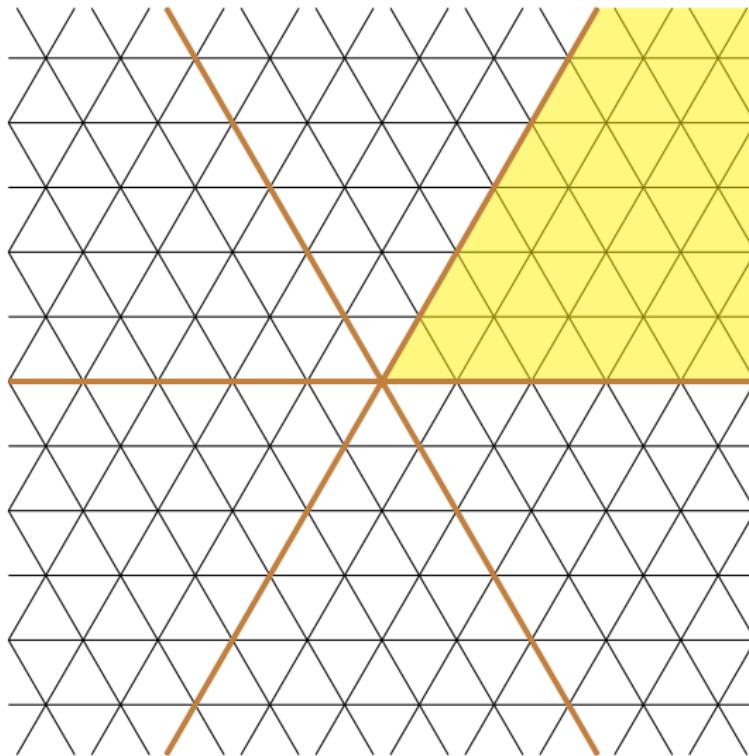
$$d_{\mathfrak{a}^+}(xK, yK) = \lambda \text{ iff } x^{-1}y \in K e^\lambda K$$

- Also have Weyl-chamber valued distance on BT buildings.

Cartan decomposition and relative position



Cartan decomposition and relative position



Polytopal balls and directing elements

$\{z \in G/K : d_{\mathfrak{a}^+}(x, z) = \lambda\} = \text{spherical shell of radius } \lambda \text{ centered at } x$

Polytopal balls and directing elements

$\{z \in G/K : d_{\mathfrak{a}^+}(x, z) = \lambda\} = \text{spherical shell of radius } \lambda \text{ centered at } x$

- Given a polytope $P \subset \mathfrak{a}^+$, we can define a corresponding ball (assuming $\bigcup_{w \in W} w.P$ is convex):

$B_P(x) := \{z \in G/K : d_{\mathfrak{a}^+}(x, z) \in P\} = \text{"P-shaped ball" centered at } x$

Polytopal balls and directing elements

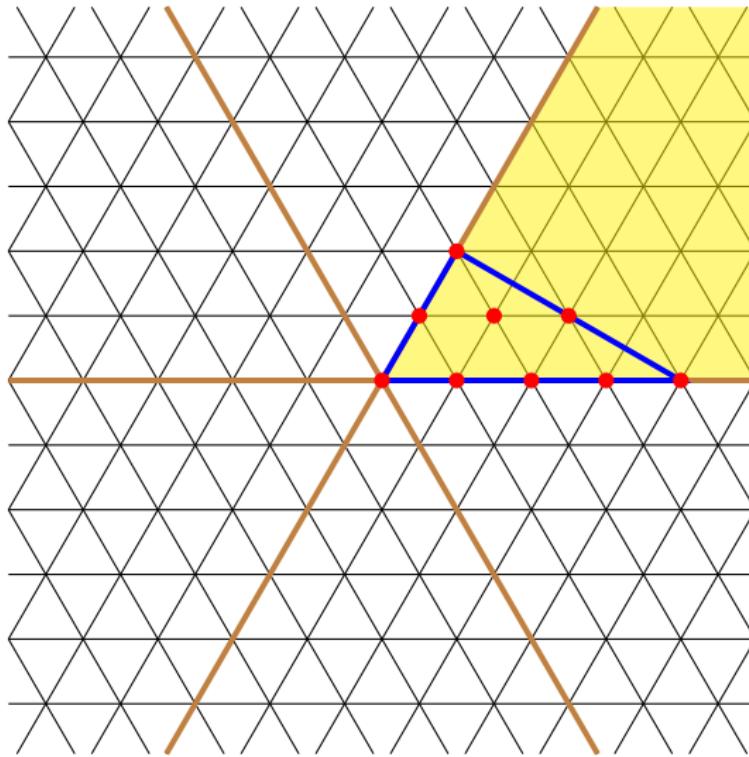
$\{z \in G/K : d_{\mathfrak{a}^+}(x, z) = \lambda\} = \text{spherical shell of radius } \lambda \text{ centered at } x$

- Given a polytope $P \subset \mathfrak{a}^+$, we can define a corresponding ball (assuming $\bigcup_{w \in W} w.P$ is convex):

$B_P(x) := \{z \in G/K : d_{\mathfrak{a}^+}(x, z) \in P\} = \text{"P-shaped ball" centered at } x$

- If P has a unique vertex $H_0 \in \mathfrak{a}^+$ maximizing $\langle \rho, - \rangle$ (half sum of positive roots), then we call H_0 the *directing element*.

Polytopal balls



Geometric bound in higher rank

- Suppose $d_{\mathfrak{a}^+}(x, y) = \lambda$, and P is a polytope with directing element H_0 .

Geometric bound in higher rank

- Suppose $d_{\mathfrak{a}^+}(x, y) = \lambda$, and P is a polytope with directing element H_0 .
- In the context of the proof technique, one seeks the following bound:

$$\text{Vol}(B_{t \cdot P}(x) \cap B_{t \cdot P}(y)) \lesssim e^{\langle \rho, 2t \cdot H_0 - \lambda \rangle} \quad (\text{or } \lesssim q^{\langle \rho, 2t \cdot H_0 - \lambda \rangle})$$

Geometric bound in higher rank

- Suppose $d_{\mathfrak{a}^+}(x, y) = \lambda$, and P is a polytope with directing element H_0 .
- In the context of the proof technique, one seeks the following bound:

$$\text{Vol}(B_{t \cdot P}(x) \cap B_{t \cdot P}(y)) \lesssim e^{\langle \rho, 2t \cdot H_0 - \lambda \rangle} \quad (\text{or } \lesssim q^{\langle \rho, 2t \cdot H_0 - \lambda \rangle})$$

- BUT, not true for arbitrary choices of H_0 .

Geometric bound in higher rank

- Suppose $d_{\mathfrak{a}^+}(x, y) = \lambda$, and P is a polytope with directing element H_0 .
- In the context of the proof technique, one seeks the following bound:

$$\text{Vol}(B_{t \cdot P}(x) \cap B_{t \cdot P}(y)) \lesssim e^{\langle \rho, 2t \cdot H_0 - \lambda \rangle} \quad (\text{or } \lesssim q^{\langle \rho, 2t \cdot H_0 - \lambda \rangle})$$

- BUT, not true for arbitrary choices of H_0 .
- In my thesis, I show that for non-archimedean $\text{PGL}(3)$, we have

$$|B_{t \cdot P}(x) \cap B_{t \cdot P}(y)| \approx \Gamma_P(\lambda, t) q^{\langle \rho, 2t \cdot H_0 - \frac{\lambda}{2} \rangle}.$$

- Here $\Gamma_P(\cdot)$ is a piecewise linear function.

Geometric bound in higher rank

- Suppose $d_{\mathfrak{a}^+}(x, y) = \lambda$, and P is a polytope with directing element H_0 .
- In the context of the proof technique, one seeks the following bound:

$$\text{Vol}(B_{t \cdot P}(x) \cap B_{t \cdot P}(y)) \lesssim e^{\langle \rho, 2t \cdot H_0 - \lambda \rangle} \quad (\text{or } \lesssim q^{\langle \rho, 2t \cdot H_0 - \lambda \rangle})$$

- BUT, not true for arbitrary choices of H_0 .
- In my thesis, I show that for non-archimedean $\text{PGL}(3)$, we have

$$|B_{t \cdot P}(x) \cap B_{t \cdot P}(y)| \approx \Gamma_P(\lambda, t) q^{\langle \rho, 2t \cdot H_0 - \frac{\lambda}{2} \rangle}.$$

- Here $\Gamma_P(\cdot)$ is a piecewise linear function.
- However, if we choose H_0 to be *extremely singular*, then we get

$$|B_{t \cdot P}(x) \cap B_{t \cdot P}(y)| \lesssim q^{\langle \rho, 2t \cdot H_0 - \lambda \rangle}.$$

Geometric bound in higher rank

- In joint work with Brumley, Marshall, and Matz, we've been able to show that if one chooses an *extremely singular* directing element H_0 , then we get

$$\text{Vol}(B_{t \cdot P}(x) \cap B_{t \cdot P}(y)) \lesssim \log(t)^k e^{\langle \rho, 2t \cdot H_0 - \lambda \rangle}.$$

Geometric bound in higher rank

- In joint work with Brumley, Marshall, and Matz, we've been able to show that if one chooses an *extremely singular* directing element H_0 , then we get

$$\text{Vol}(B_{t \cdot P}(x) \cap B_{t \cdot P}(y)) \lesssim \log(t)^k e^{\langle \rho, 2t \cdot H_0 - \lambda \rangle}.$$

- This bound is good enough to complete the proof.

Geometric bound in higher rank

- In joint work with Brumley, Marshall, and Matz, we've been able to show that if one chooses an *extremely singular* directing element H_0 , then we get

$$\text{Vol}(B_{t \cdot P}(x) \cap B_{t \cdot P}(y)) \lesssim \log(t)^k e^{\langle \rho, 2t \cdot H_0 - \lambda \rangle}.$$

- This bound is good enough to complete the proof.
- Really, we work with thickened spherical shells with “radius” tH_0 , rather than balls.

Geometric bound in higher rank

- In joint work with Brumley, Marshall, and Matz, we've been able to show that if one chooses an *extremely singular* directing element H_0 , then we get

$$\text{Vol}(B_{t \cdot P}(x) \cap B_{t \cdot P}(y)) \lesssim \log(t)^k e^{\langle \rho, 2t \cdot H_0 - \lambda \rangle}.$$

- This bound is good enough to complete the proof.
- Really, we work with thickened spherical shells with “radius” tH_0 , rather than balls.
- The root systems E_6, E_8, F_4, G_2 do not admit extremely singular elements.

Semi-dense subroot systems

- Let Φ be a reduced irreducible root system.

Semi-dense subroot systems

- Let Φ be a reduced irreducible root system.
- We say that $\Phi_0 \subset \Phi$ is a *semi-dense root subsystem* if, for every semi-standard root subsystem Ψ we have

$$|\Psi \cap \Phi_0| + \text{rank}(\Psi) \geq \frac{1}{2}|\Psi|.$$

Semi-dense subroot systems

- Let Φ be a reduced irreducible root system.
- We say that $\Phi_0 \subset \Phi$ is a *semi-dense root subsystem* if, for every semi-standard root subsystem Ψ we have

$$|\Psi \cap \Phi_0| + \text{rank}(\Psi) \geq \frac{1}{2}|\Psi|.$$

- Semi-dense root subsystems give extremely singular directing elements.

Semi-dense subroot systems

- Let Φ be a reduced irreducible root system.
- We say that $\Phi_0 \subset \Phi$ is a *semi-dense root subsystem* if, for every semi-standard root subsystem Ψ we have

$$|\Psi \cap \Phi_0| + \text{rank}(\Psi) \geq \frac{1}{2}|\Psi|.$$

- Semi-dense root subsystems give extremely singular directing elements.

type of Φ	Dynkin diagram of Φ_0 (remove \bullet)	type of Φ_0
A_n	$\bullet - \circ - \cdots - \circ - \circ$	A_{n-1}
B_n	$\bullet - \circ - \cdots - \circ - \circ \rightleftharpoons$	B_{n-1}
C_n	$\bullet - \circ - \cdots - \circ - \circ \rightleftharpoons$	C_{n-1}
D_n	$\bullet - \circ - \cdots - \circ - \circ \backslash \circ$	D_{n-1}
E_7	$\circ - \circ - \circ - \circ - \circ - \bullet$	E_6