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The Laplacian

e Eigendata of A:

O=X < A< <. eigenvalues of A
{9} ONB of eigenfunctions of A

e In QM, 7 has energy h2)\j. Let h; = %
J

fix hand let \; = 00 =~ fix energy and let h; — 0

@ As \j — oo, should “recover” ergodicity ~ 1); equidistributes
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Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de
Verdiere)

Let a e C*°(Y). Then

)\|I—>moo #{/: )\J < )\} Z ‘/ || d@Vol — /Ya cTVoI‘2 =

@ Average over eigenfunctions with eigenvalue less than A

o Compare the measures [1);|2dVol and dVol weakly (integrate against
test function)

@ Interpretations:

@ Generic high energy quantum particles equidistribute.
© Generic bounded energy quantum particles equidistribute as h — 0.
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Visualization of quantum ergodicity

Figure: Image made by Alex Barnett
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e Eigenvalues of A lie in [0, 00)

@ QE in the large eigenvalue limit:

fix the manifold & vary the spectral window
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QE in large eigenvalue limit vs. QE in the BS limit

e Eigenvalues of A lie in [0, 00)

@ QE in the large eigenvalue limit:

fix the manifold & vary the spectral window

|
I T
0 A — 00

@ QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold
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Benjamini-Schramm convergence
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Symmetric spaces

G = semisimple Lie group over R (w/o compact factors)
X is associated Riemannian manifold called symmetric space

D(G, K) = G-invariant differential operators on X

o
o
e X = G/K with K a maximal compact subgroup
o
e Fact: D(G, K) generated by k operators

G =SL(2,R)
X=H
K = SO(2)

D(G, K) = algebra generated by A
Figure: A closely related to averaging
over spheres in H
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Bruhat-Tits buildings

e G = semisimple algebraic group over F (non-archimedean local field)
@ B is associated simplicial complex called Bruhat-Tits building

e B~ G/K with K a hyperspecial maximal compact subgroup

e H(G,K) ~ G-invariant geometric operators (spherical Hecke algebra)
e Fact: H(G, K) generated by k operators

G = PGL(2,Qp)
B = infinite (p + 1)-regular tree
G/K = vertices of B
K = PGL(2,Zp)
H(G,K) = alg. gen.'d by adj. op. A Figure: Adjacency operator A on tree

involves summing over sphere of radius 1
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Buildings are composed of branching apartments

s
o fs
s

Figure: An apartment in the tree is a bi-infinite geodesic.
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Branching apartments
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Visualization of Bruhat-Tits building for SL(3)

Figure: Image made by Paul Garrett
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H(G, K) generated by refinements of adjacency operator
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]
Quotients of X and B

o [ < G cocompact, torsionfree lattice

locally symmetric space (e.g. hyperbolic surface)

finite simplicial complex (e.g. finite regular graph)

SONR
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Joint eigenfunctions and spectral parameters

o Let C = either D(G, K) or H(G, K)
@ C generated by k operators Ay, ..., Ax

C~[2(MN\G/K) = @(ij (joint eigenfunctions)

J

vj = k-tuple of eigenvalues (spectral parameter)
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Tempered spectrum
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@ Tempered spectrum:

spectrum of
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universal cover
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Tempered spectrum

irreps of C

{k-tuples} <> {(all 1-dim) with K-fixed vector

admissible irreps of G
} o
(spherical repns)

@ Tempered spectrum:

_l’_
Qtemp

= C A L2(G/K)

universal cover
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Tempered spectrum

(all 1-dim.) with K-fixed vector

rreps of C admissible irreps of G
{k-tuples} < { P } “—
(spherical repns)

@ Tempered spectrum:

spectrum of

C L2(G/K) S o {spherical repns}

: in L2(G)
universal cover

_l’_
Qtemp A

.........

NI

Figure: Q,,, for A on His [1/4, 00)
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Tempered spectrum

rreps of C admissible irreps of G
{k-tuples} <> {(all ii)l-dim )} with K-fixed vector

(spherical repns)
e Tempered spectrum:

spectrum of

C L2(G/K) S o {spherical repns}

: in L2(G)
universal cover

_l’_
Qtemp A

.........

Figure: Qi for A on His [1/4,00)  Figure: Qiem for A on (g + 1)-regular
tree is [-2,/q,2,/q]
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BS convergence implies Plancherel convergence

3 2 1 1 2 3

Figure: Distribution of eigenvalues for large random 3-regular graph

#{j: \" e 1)
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Tempered spectrum for symmetric spaces

@ For symmetric spaces, the tempered spectrum is parametrized by
a*/W, i.e. a Weyl chamber.
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Framework for QE in the BS limit

Suppose Y, = I',\H with ', cocompact, torsionfree lattices s.t.

@ Benjamini-Schramm convergence: Y, B m
@ Uniform spectral gap for A ~ L?(Y,)
© Uniform discreteness

For each Y), let {w}")} be ONB of eigenfunctions of A ~ L?(Y,) with

associated eigenvalues Aj(-") . Let Z C (1/4,00) be a compact interval. Let
ap € L*°(Y},) with uniform L*°-bound. Then we expect

/ an - [\ dVoI—/ an dVol
Yn Yn

2
=0.
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Preceding literature on QE in the BS limit

@ Anantharaman-Le Masson '15 - set up the framework for QE in the
BS limit and proved it for regular graphs
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Wave propagator to geometric bound

' 2
Z/ an - [ 2 @vol
J Y, J
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Wave propagator to geometric bound

' 2
Z ‘ /y an - \l,'J(-ﬂ)‘Z dVo|‘ = Z ‘(w}”), a, wj(n)>‘2
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Wave propagator to geometric bound

@ Ap = wave propagator

Z ’ /Y dp - Wj(n)\z JVO|‘2 = Z ‘(wj(”)7 a, - 77bj(n)>‘2
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Wave propagator to geometric bound

o Ay = wave propagator

Z’/y an'\lﬂ}n)\z WO|‘2:Z‘<¢}n),an.w§n)>‘2S Z HAM¢J(n)H2

all w}”)
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Wave propagator to geometric bound

o Ay = wave propagator
e Up =~ avg over polytopal ball
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Wave propagator to geometric bound

o Ay = wave propagator
e U, ~ avg over polytopal ball
e B, (x) = polytopal ball of radius m centered at x
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Wave propagator to geometric bound
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Wave propagator to

o Ay = wave propagator

e Up =~ avg over polytopal ball

e B, (x) = polytopal ball of radius m centered at x

Z’/y an'WJ(n)\Z WO|‘2:Z‘<¢}n),an.w§n)>‘2S Z "AM¢§n)"2

all w}”)

’ Analyze kernel function ‘

Uy, 0ap0Un
1
integrate a, over By, (x) N Bm(y)
1

convolution op. assoc.
to Bm(X) N Bm()/)

QE in the BS limit in higher rank

’ Ergodic theorem of Nevo‘

norm of < 1

conv. op. ™~ 4

October 21, 2025 30/39



Geometric bound in rank one

@ In rank one, polytopal balls are just metric balls.
o Let G/K = Tq41. Suppose d(x,y) = r. Then

|Bi(x) N B(y)| = qt_é
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Geometric bound in rank one

@ In rank one, polytopal balls are just metric balls.
o Let G/K = Tq41. Suppose d(x,y) = r. Then

|Bi(x) N B(y)| = qt_é

Figure: Bg(x) N Bg(y) on 3-regular tree with d(x,y) =6
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Geometric bound in rank one

e Let G/K = H. Suppose d(x,y) = r. Then
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Geometric bound in rank one

e Let G/K = H. Suppose d(x,y) = r. Then

Vol(B:(x) N Bi(y)) ~ e' 2.

— arcosh —cosht
= arcosh cosh(r/2) __——
— ~ —

FIGURE 2. The volume of the sets F}(r) used in the proof of Proposition
4.1 can be controlled by the volume of the balls B(z,t —r/2) and B(z, o),
where cosh p = cc?l;?‘:tZ) by the hyperbolic version of Pythagoras’ theorem.

The volume of both of these balls is O(e!~"/2).

Carsten Peterson QE in the BS limit in higher rank October 21, 2025 32/39




Cartan decomposition and relative position

o G = semisimple real Lie group

o Cartan decomposition:

G = |_| Ke K.

A€at
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Cartan decomposition and relative position

o G = semisimple real Lie group

o Cartan decomposition:

G = |_| Ke K.

A€at

@ Weyl chamber-valued “distance’:
dy+ (xK, yK) = X iff x 71y € Ke*K

@ Also have Weyl-chamber valued distance on BT buildings.
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Cartan decomposition and relative position
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Cartan decomposition and relative position
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Polytopal balls and directing elements

{z€ G/K : dy+(x,z) = A} = spherical shell of radius “\" centered at x
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Polytopal balls and directing elements

{z€ G/K : dy+(x,z) = A} = spherical shell of radius “\" centered at x

@ Given a polytope P C a™, we can define a corresponding ball
(assuming |J, ey w.P is convex):

Bp(x):={z€ G/K : dy+(x,z) € P} = "P-shaped ball" centered at x
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Polytopal balls and directing elements

{z€ G/K : dy+(x,z) = A} = spherical shell of radius “\" centered at x

@ Given a polytope P C a™, we can define a corresponding ball
(assuming |J, ey w.P is convex):

Bp(x):={z€ G/K : dy+(x,z) € P} = "P-shaped ball" centered at x

e If P has a unique vertex Hy € a™ maximizing (p, —) (half sum of
positive roots), then we call Hy the directing element.
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Polytopal balls
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Geometric bound in higher rank

@ Suppose dy+(x,y) = A, and P is a polytope with directing element Hp.
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Geometric bound in higher rank

@ Suppose dy+(x,y) = A, and P is a polytope with directing element Hp.
@ In the context of the proof technique, one seeks the following bound:

Vol(Bt.p(x) N Be.p(y)) < olp.2t-Ho—X) (or < q<p,2t-Ho—)\))
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@ Suppose dy+(x,y) = A, and P is a polytope with directing element Hp.
@ In the context of the proof technique, one seeks the following bound:

Vol(Bt.p(x) N Be.p(y)) < olp.2t-Ho—X) (or < q<p,2t-Ho—)\))

@ BUT, not true for arbitrary choices of Hjp.
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Geometric bound in higher rank

@ Suppose dy+(x,y) = A, and P is a polytope with directing element Hp.
@ In the context of the proof technique, one seeks the following bound:

Vol(Bt.p(x) N Be.p(y)) < olp.2t-Ho—X) (or < q<p,2t-Ho—)\))

BUT, not true for arbitrary choices of Hp.
In my thesis, | show that for non-archimedean PGL(3), we have

A
|Bep(x) N Bep(y) = Tp(A, t)gi?tHo=2),

Here ['p(-) is a piecewise linear function.
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Geometric bound in higher rank

@ Suppose dy+(x,y) = A, and P is a polytope with directing element Hp.
@ In the context of the proof technique, one seeks the following bound:

Vol(Bt.p(x) N Be.p(y)) < olp.2t-Ho—X) (or < q<p,2t-Ho—)\))

BUT, not true for arbitrary choices of Hp.
In my thesis, | show that for non-archimedean PGL(3), we have

A
|Bep(x) N Bep(y) = Tp(A, t)gi?tHo=2),

Here ['p(-) is a piecewise linear function.

However, if we choose Hy to be extremally singular, then we get

|Be.p(x) N Bep(y)| S glP2t-Ho=)
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Geometric bound in higher rank

@ In joint work with Brumley, Marshall, and Matz, we've been able to
show that if one chooses an extremally singular directing element Hg,
then we get

Vol(Be.p(x) N Be.p(y)) < log(t)kelr2tHo=A),
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@ In joint work with Brumley, Marshall, and Matz, we've been able to
show that if one chooses an extremally singular directing element Hg,

then we get

Vol(Be.p(x) N Be.p(y)) < log(t)kelr2tHo=A),

@ This bound is good enough to complete the proof.
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Geometric bound in higher rank

@ In joint work with Brumley, Marshall, and Matz, we've been able to
show that if one chooses an extremally singular directing element Hg,
then we get

Vol(Be.p(x) N Be.p(y)) < log(t)kelr2tHo=A),

@ This bound is good enough to complete the proof.

o Really, we work with thickened spherical shells with “radius” tHp,
rather than balls.
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Geometric bound in higher rank

@ In joint work with Brumley, Marshall, and Matz, we've been able to
show that if one chooses an extremally singular directing element Hg,
then we get

Vol(Be.p(x) N Be.p(y)) < log(t)kelr2tHo=A),

@ This bound is good enough to complete the proof.

o Really, we work with thickened spherical shells with “radius” tHp,
rather than balls.

@ The root systems Eg, Eg, F4, Go do not admit extremally singular
elements.

QE in the BS limit in higher rank October 21, 2025 38/39



Semi-dense subroot systems

o Let ® be a reduced irreducible root system.
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Semi-dense subroot systems

o Let ® be a reduced irreducible root system.
o We say that ®¢ C ® is a semi-dense root subsystem if, for every
semi-standard root subsystem W we have

1
|W N o[ + rank(W) > EIW]
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@ Semi-dense root subsystems give extremally singular directing
elements.
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Semi-dense subroot systems

o Let ® be a reduced irreducible root system.

o We say that ®¢ C ® is a semi-dense root subsystem if, for every
semi-standard root subsystem W we have

1
|W N o[ + rank(W) > EIW]

@ Semi-dense root subsystems give extremally singular directing
elements.

type of ® | Dynkin diagram of ®g (remove o) | type of ®g

An &—0——0—0 An—l

Bn —O0——0—O0=>=0 anl

—0——0—0=%0 Ch—l
D, .o % D, .
E} O—O—i%}{k& Eb
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