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Geodesic flow on hyperbolic surface

Y compact hyperbolic surface
Φt ↷ T 1Y geodesic flow

curvature < 0 =⇒ Φt is ergodic
=⇒ generic geodesics equidistribute
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Classical and quantum mechanics on Y

classical mechanics ≈ Φt ↷ T 1Y
geodesic flow

quantum mechanics ≈ e ith∆ ↷ L2(Y )
Schrödinger flow

quantization h→0
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Quantum particles

Renormalize volume measure: đVol = dVol
Vol(Y )

Quantum particle ⇝ ψ ∈ L2(Y , đVol) with ||ψ||2 = 1

P(observing ψ in E ⊂ Y ) =

ˆ
E
|ψ|2 đVol

=

ˆ
Y
1E · |ψ|2 đVol

If ψ were equidistributed:

P(observing ψ in E ⊂ Y ) =
Vol(E )
Vol(Y )

=

ˆ
Y
1E đVol
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The Laplacian

Eigendata of ∆:

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . eigenvalues of ∆

{ψj} ONB of eigenfunctions of ∆

In QM, ψj has energy h2λj . Let hj = 1√
λj

.

fix h and let λj → ∞ ≈ fix energy and let hj → 0

As λj → ∞, should “recover” ergodicity ⇝ ψj equidistributes
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Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de
Verdiere)

Let a ∈ C∞(Y ). Then

lim
λ→∞

1
#{j : λj ≤ λ}

∑
j :λj≤λ

∣∣∣ ˆ
Y
a · |ψj |2 đVol −

ˆ
Y
a đVol

∣∣∣2 = 0.

Average over eigenfunctions with eigenvalue less than λ
Compare the measures |ψj |2đVol and đVol weakly (integrate against
test function)
Interpretations:

1 Generic high energy quantum particles equidistribute.
2 Generic bounded energy quantum particles equidistribute as h → 0.
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Visualization of quantum ergodicity

Figure: Image made by Alex Barnett

Carsten Peterson QE in the BS limit in higher rank October 21, 2025 7 / 39



QE in large eigenvalue limit vs. QE in the BS limit

Eigenvalues of ∆ lie in [0,∞)

QE in the large eigenvalue limit:

fix the manifold & vary the spectral window

0 λ→ ∞

QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold

0 1
4 I
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Benjamini-Schramm convergence

(Yn) Benjamini-Schramm converges to H if, for
every R > 0,

lim
n→∞

Vol
(
{y ∈ Yn : InjRadYn

(y) ≤ R}
)

Vol(Yn)
= 0.

Interpretation: most points have arbitrarily large
injectivity radius

Spectrum of ∆ on H is [14 ,∞).
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QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten ’17)

Suppose (Yn) is a sequence of compact hyperbolic surfaces s.t.

1 Benjamini-Schramm convergence: Yn
BS−−→ H.

2 Uniform spectral gap: λ(n)1 bounded away from 0 for all n.
3 Uniform discreteness: InjRad(Yn) bounded away from 0 for all n.

Let {ψ(n)
j } be ONB of eigenfunctions for ∆ acting on L2(Yn) with

eigenvalues 0 = λ
(n)
0 ≤ λ

(n)
1 ≤ . . . . Let I ⊂ (1

4 ,∞) be a compact
subinterval. Let an ∈ L∞(Yn) with uniformly bounded L∞-norm. Then

lim
n→∞

1

#{j : λ(n)j ∈ I}

∑
j :λ

(n)
j ∈I

∣∣∣∣∣
ˆ
Yn

an · |ψ(n)
j |2 đVol −

ˆ
Yn

an đVol

∣∣∣∣∣
2

= 0.
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Real and p-adic (locally) symmetric spaces

rank one higher rank

archimedean hyperbolic surfaces symmetric spaces

non-archimedean regular graphs Bruhat-Tits buildings
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Quantization in higher rank

rank one → geod. flow ergodic
(R-action)

→ QE involves ∆

higher rank → geod. flow NOT ergodic
(BUT ergodic Rk -action)

→ QE involves k operators
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Symmetric spaces

G = semisimple Lie group over R (w/o compact factors)
X is associated Riemannian manifold called symmetric space
X = G/K with K a maximal compact subgroup
D(G ,K ) = G -invariant differential operators on X

Fact: D(G ,K ) generated by k operators

G = SL(2,R)
X = H
K = SO(2)

D(G ,K ) = algebra generated by ∆
Figure: ∆ closely related to averaging
over spheres in H
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Bruhat-Tits buildings

G = semisimple algebraic group over F (non-archimedean local field)
B is associated simplicial complex called Bruhat-Tits building
B ≈ G/K with K a hyperspecial maximal compact subgroup
H(G ,K ) ≈ G -invariant geometric operators (spherical Hecke algebra)
Fact: H(G ,K ) generated by k operators

G = PGL(2,Qp)

B = infinite (p + 1)-regular tree
G/K = vertices of B

K = PGL(2,Zp)

H(G ,K ) = alg. gen.’d by adj. op. A Figure: Adjacency operator A on tree
involves summing over sphere of radius 1
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Buildings are composed of branching apartments

Figure: An apartment in the tree is a bi-infinite geodesic.
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An apartment in the Bruhat-Tits building of SL(3)
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Branching apartments
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Visualization of Bruhat-Tits building for SL(3)

Figure: Image made by Paul Garrett
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H(G ,K ) generated by refinements of adjacency operator
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Quotients of X and B

Γ < G cocompact, torsionfree lattice

Γ\G/K is

{
locally symmetric space (e.g. hyperbolic surface)
finite simplicial complex (e.g. finite regular graph)
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Joint eigenfunctions and spectral parameters

Let C = either D(G ,K ) or H(G ,K )

C generated by k operators A1, . . . ,Ak

C ↷ L2(Γ\G/K ) =
⊕
j

Cψj (joint eigenfunctions)

νj = k-tuple of eigenvalues (spectral parameter)
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Tempered spectrum

{k-tuples} ↔
{

irreps of C
(all 1-dim.)

}
↔


admissible irreps of G
with K -fixed vector
(spherical repns)


Tempered spectrum:

Ω+
temp ↔


spectrum of

C ↷ L2(G/K )
universal cover

 ↔
{

spherical repns
in L2(G )

}

0 1
4

Figure: Ω+
temp for ∆ on H is [1/4,∞)

−(q + 1)

−2√q 2√q

q + 1

Figure: Ω+
temp for A on (q + 1)-regular

tree is [−2
√
q, 2

√
q]

Carsten Peterson QE in the BS limit in higher rank October 21, 2025 22 / 39



Tempered spectrum

{k-tuples} ↔
{

irreps of C
(all 1-dim.)

}
↔


admissible irreps of G
with K -fixed vector
(spherical repns)


Tempered spectrum:

Ω+
temp ↔


spectrum of

C ↷ L2(G/K )
universal cover

 ↔
{

spherical repns
in L2(G )

}

0 1
4

Figure: Ω+
temp for ∆ on H is [1/4,∞)

−(q + 1)

−2√q 2√q

q + 1

Figure: Ω+
temp for A on (q + 1)-regular

tree is [−2
√
q, 2

√
q]

Carsten Peterson QE in the BS limit in higher rank October 21, 2025 22 / 39



Tempered spectrum

{k-tuples} ↔
{

irreps of C
(all 1-dim.)

}
↔


admissible irreps of G
with K -fixed vector
(spherical repns)


Tempered spectrum:

Ω+
temp ↔


spectrum of

C ↷ L2(G/K )
universal cover

 ↔
{

spherical repns
in L2(G )

}

0 1
4

Figure: Ω+
temp for ∆ on H is [1/4,∞)

−(q + 1)

−2√q 2√q

q + 1

Figure: Ω+
temp for A on (q + 1)-regular

tree is [−2
√
q, 2

√
q]

Carsten Peterson QE in the BS limit in higher rank October 21, 2025 22 / 39



Tempered spectrum

{k-tuples} ↔
{

irreps of C
(all 1-dim.)

}
↔


admissible irreps of G
with K -fixed vector
(spherical repns)


Tempered spectrum:

Ω+
temp ↔


spectrum of

C ↷ L2(G/K )
universal cover

 ↔
{

spherical repns
in L2(G )

}

0 1
4

Figure: Ω+
temp for ∆ on H is [1/4,∞)

−(q + 1)

−2√q 2√q

q + 1

Figure: Ω+
temp for A on (q + 1)-regular

tree is [−2
√
q, 2

√
q]

Carsten Peterson QE in the BS limit in higher rank October 21, 2025 22 / 39



Tempered spectrum

{k-tuples} ↔
{

irreps of C
(all 1-dim.)

}
↔


admissible irreps of G
with K -fixed vector
(spherical repns)


Tempered spectrum:

Ω+
temp ↔


spectrum of

C ↷ L2(G/K )
universal cover

 ↔
{

spherical repns
in L2(G )

}

0 1
4

Figure: Ω+
temp for ∆ on H is [1/4,∞)

−(q + 1)

−2√q 2√q

q + 1

Figure: Ω+
temp for A on (q + 1)-regular

tree is [−2
√
q, 2

√
q]

Carsten Peterson QE in the BS limit in higher rank October 21, 2025 22 / 39



Tempered spectrum

{k-tuples} ↔
{

irreps of C
(all 1-dim.)

}
↔


admissible irreps of G
with K -fixed vector
(spherical repns)


Tempered spectrum:

Ω+
temp ↔


spectrum of

C ↷ L2(G/K )
universal cover

 ↔
{

spherical repns
in L2(G )

}

0 1
4

Figure: Ω+
temp for ∆ on H is [1/4,∞)

−(q + 1)

−2√q 2√q

q + 1

Figure: Ω+
temp for A on (q + 1)-regular

tree is [−2
√
q, 2

√
q]

Carsten Peterson QE in the BS limit in higher rank October 21, 2025 22 / 39



BS convergence implies Plancherel convergence

Figure: Distribution of eigenvalues for large random 3-regular graph

#{j : λ(n)j ∈ I}
Vol(Yn)

→ µ(I)
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Tempered spectrum for symmetric spaces

For symmetric spaces, the tempered spectrum is parametrized by
a∗/W , i.e. a Weyl chamber.
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Framework for QE in the BS limit

Suppose Yn = Γn\H with Γn cocompact, torsionfree lattices s.t.

1 Benjamini-Schramm convergence: Yn
BS−−→ H

2 Uniform spectral gap for ∆ ↷ L2(Yn)

3 Uniform discreteness
For each Yn let {ψ(n)

j } be ONB of eigenfunctions of ∆ ↷ L2(Yn) with

associated eigenvalues λ(n)j . Let I ⊂ (1/4,∞) be a compact interval. Let
an ∈ L∞(Yn) with uniform L∞-bound. Then we expect

lim
n→∞

1

#{j : λ(n)j ∈ I}

∑
j :λ

(n)
j ∈I

∣∣∣∣∣
ˆ
Yn

an · |ψ(n)
j |2 đVol −

ˆ
Yn

an đVol

∣∣∣∣∣
2

= 0.
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temp

I ⊂ (1/4,∞) be a
nice subset

compact interval. Let
an ∈ L∞(Yn) with uniform L∞-bound. Then we expect

lim
n→∞

1

#{j : ν(n)j ∈ Θ}

∑
j :ν

(n)
j ∈Θ

∣∣∣∣∣
ˆ
Yn

an · |ψ(n)
j |2 đVol −

ˆ
Yn

an đVol

∣∣∣∣∣
2

= 0.
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Preceding literature on QE in the BS limit

Anantharaman-Le Masson ’15 - set up the framework for QE in the
BS limit and proved it for regular graphs
Brooks-Le Masson-Lindenstrauss ’16 - reproved QE in the BS limit for
regular graphs using wave propagator method
Le Masson-Sahlsten ’17 - QE in the BS limit for hyperbolic surfaces
using wave propagator; incorporated an ergodic theorem of Nevo
Abert-Bergeron-Le Masson ’18 - QE in the BS limit for rank one
locally symmetric spaces
Brumley-Matz ’22 - QE in the BS limit for SL(d ,R)/SO(d);
introduced polytopal ball averaging operators; mistake in the
geometric bound
P. ’23 - QE in the BS limit for the Bruhat-Tits building associated to
SL(3,F ) where F is a non-archimedean local field of arbitrary
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Main Theorem (Brumley-Marshall-Matz-P. ’25)

Suppose G is a product of non-compact, connected, centerless, simple real
Lie groups. Let X = G/K be the symmetric space. Let Γn < G be a
sequence of irreducible, cocompact, uniformly discrete, torsion free lattices.
Let Yn = Γn\X . Let G1 be a simple factor of G . Assume that

1 Benjamini-Schramm convergence: Yn → G/K .
2 We have a uniform spectral gap for G1 ↷ L2

0(Γ\G ).
3 The indivisible relative roots of G1 form a root system not of type

E6,E8,F4,G2 (7 exceptions).
Let ψ(n)

j be an ONB of joint eigenfunctions of D(G ,K ) acting on L2(Yn)

with spectral parameters ν(n)j . There exists a finite W -invariant set of
subspaces {Pi} of a∗ (= Ω+

temp) such that for any compact Θ ⊂ a∗ \
⋃

i Pi

with non-empty interior and any norm-bounded sequence of an ∈ L∞(Yn),

lim
n→∞

1

#{ν(n)j ∈ Θ}

∑
j :ν

(n)
j ∈Θ

∣∣∣ ˆ
Yn

an|ψ(n)
j |2đVol −

ˆ
Yn

anđVol
∣∣∣2 = 0
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Preceding literature on QE in the BS limit

Anantharaman-Le Masson ’15 - set up the framework for QE in the
BS limit and proved it for regular graphs
Brooks-Le Masson-Lindenstrauss ’16 - reproved QE in the BS limit for
regular graphs using wave propagator method
Le Masson-Sahlsten ’17 - QE in the BS limit for hyperbolic surfaces
using wave propagator; incorporated an ergodic theorem of Nevo
Abert-Bergeron-Le Masson ’18 - QE in the BS limit for rank one
locally symmetric spaces
Brumley-Matz ’22 - QE in the BS limit for SL(d ,R)/SO(d);
introduced polytopal ball averaging operators; mistake in the
geometric bound
P. ’23 - QE in the BS limit for the Bruhat-Tits building associated to
SL(3,F ) where F is a non-archimedean local field of arbitrary
characteristic; new method for the geometric bound
Brumley-Marshall-Matz-P. ’25 - fix the mistake for SL(d ,R); new
method works for all symmetric spaces except for finitely many
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Wave propagator to geometric bound

AM = wave propagator
Um ≈ avg over polytopal ball
Bm(x) = polytopal ball of radius m centered at x∑∣∣∣ ˆ

Yn

an · |ψ(n)
j |2 đVol

∣∣∣2 =
∑∣∣⟨ψ(n)

j , an · ψ(n)
j ⟩

∣∣2 ≲ ∑
all ψ(n)

j

||AMψ
(n)
j ||2

Analyze kernel function

U∗
m ◦ an ◦ Um

↓
integrate an over Bm(x) ∩ Bm(y)

↓
convolution op. assoc.

to Bm(x) ∩ Bm(y)

Ergodic theorem of Nevo

norm of
conv. op.

≲
1

Vol
(
Bm(x) ∩ Bm(y)

)δ
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Geometric bound in rank one

In rank one, polytopal balls are just metric balls.
Let G/K = Tq+1. Suppose d(x , y) = r . Then

|Bt(x) ∩ Bt(y)| ≈ qt−
r
2 .

x y

Figure: B8(x) ∩ B8(y) on 3-regular tree with d(x , y) = 6
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Geometric bound in rank one

Let G/K = H. Suppose d(x , y) = r . Then

Vol(Bt(x) ∩ Bt(y)) ≈ et−
r
2 .
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Cartan decomposition and relative position

G = semisimple real Lie group

Cartan decomposition:

G =
⊔
λ∈a+

KeλK .

Weyl chamber-valued “distance”:

da+(xK , yK ) = λ iff x−1y ∈ KeλK

Also have Weyl-chamber valued distance on BT buildings.
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Cartan decomposition and relative position
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Polytopal balls and directing elements

{z ∈ G/K : da+(x , z) = λ} = spherical shell of radius “λ” centered at x

Given a polytope P ⊂ a+, we can define a corresponding ball
(assuming

⋃
w∈W w .P is convex):

BP(x) := {z ∈ G/K : da+(x , z) ∈ P} = “P-shaped ball ” centered at x

If P has a unique vertex H0 ∈ a+ maximizing ⟨ρ,−⟩ (half sum of
positive roots), then we call H0 the directing element.
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Polytopal balls
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Geometric bound in higher rank

Suppose da+(x , y) = λ, and P is a polytope with directing element H0.

In the context of the proof technique, one seeks the following bound:

Vol(Bt·P(x) ∩ Bt·P(y)) ≲ e⟨ρ,2t·H0−λ⟩ (or ≲ q⟨ρ,2t·H0−λ⟩)

BUT, not true for arbitrary choices of H0.
In my thesis, I show that for non-archimedean PGL(3), we have

|Bt·P(x) ∩ Bt·P(y)| ≈ ΓP(λ, t)q
⟨ρ,2t·H0−λ

2 ⟩.

Here ΓP(·) is a piecewise linear function.
However, if we choose H0 to be extremally singular, then we get

|Bt·P(x) ∩ Bt·P(y)| ≲ q⟨ρ,2t·H0−λ⟩.
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Geometric bound in higher rank

In joint work with Brumley, Marshall, and Matz, we’ve been able to
show that if one chooses an extremally singular directing element H0,
then we get

Vol(Bt·P(x) ∩ Bt·P(y)) ≲ log(t)ke⟨ρ,2t·H0−λ⟩.

This bound is good enough to complete the proof.
Really, we work with thickened spherical shells with “radius” tH0,
rather than balls.
The root systems E6,E8,F4,G2 do not admit extremally singular
elements.
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Semi-dense subroot systems

Let Φ be a reduced irreducible root system.

We say that Φ0 ⊂ Φ is a semi-dense root subsystem if, for every
semi-standard root subsystem Ψ we have

|Ψ ∩ Φ0|+ rank(Ψ) ≥ 1
2
|Ψ|.

Semi-dense root subsystems give extremally singular directing
elements.

type of Φ Dynkin diagram of Φ0 (remove •) type of Φ0

An An−1
Bn Bn−1
Cn Cn−1

Dn Dn−1

E7 E6
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