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Geodesic flow on hyperbolic surface

Y compact hyperbolic surface
Φt ↷ T 1Y geodesic flow

curvature < 0 =⇒ Φt is ergodic
=⇒ generic geodesics equidistribute
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Classical and quantum mechanics on Y

classical mechanics ≈ Φt ↷ T 1Y
geodesic flow

quantum mechanics ≈ e ith∆ ↷ L2(Y )
Schrödinger flow

quantization h→0
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Quantum particles

Renormalize volume measure: đVol = dVol
Vol(Y )

Quantum particle ⇝ ψ ∈ L2(Y , đVol) with ||ψ||2 = 1

P(observing ψ in E ⊂ Y ) =

ˆ
E
|ψ|2 đVol

=

ˆ
Y
1E · |ψ|2 đVol

If ψ were equidistributed:

P(observing ψ in E ⊂ Y ) =
Vol(E )
Vol(Y )

=

ˆ
Y
1E đVol

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 4 / 40



Quantum particles

Renormalize volume measure: đVol = dVol
Vol(Y )

Quantum particle ⇝ ψ ∈ L2(Y , đVol) with ||ψ||2 = 1

P(observing ψ in E ⊂ Y ) =

ˆ
E
|ψ|2 đVol

=

ˆ
Y
1E · |ψ|2 đVol

If ψ were equidistributed:

P(observing ψ in E ⊂ Y ) =
Vol(E )
Vol(Y )

=

ˆ
Y
1E đVol

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 4 / 40



Quantum particles

Renormalize volume measure: đVol = dVol
Vol(Y )

Quantum particle ⇝ ψ ∈ L2(Y , đVol) with ||ψ||2 = 1

P(observing ψ in E ⊂ Y ) =

ˆ
E
|ψ|2 đVol

=

ˆ
Y
1E · |ψ|2 đVol

If ψ were equidistributed:

P(observing ψ in E ⊂ Y ) =
Vol(E )
Vol(Y )

=

ˆ
Y
1E đVol

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 4 / 40



Quantum particles

Renormalize volume measure: đVol = dVol
Vol(Y )

Quantum particle ⇝ ψ ∈ L2(Y , đVol) with ||ψ||2 = 1

P(observing ψ in E ⊂ Y ) =

ˆ
E
|ψ|2 đVol

=

ˆ
Y
1E · |ψ|2 đVol

If ψ were equidistributed:

P(observing ψ in E ⊂ Y ) =
Vol(E )
Vol(Y )

=

ˆ
Y
1E đVol

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 4 / 40



Quantum particles

Renormalize volume measure: đVol = dVol
Vol(Y )

Quantum particle ⇝ ψ ∈ L2(Y , đVol) with ||ψ||2 = 1

P(observing ψ in E ⊂ Y ) =

ˆ
E
|ψ|2 đVol

=

ˆ
Y
1E · |ψ|2 đVol

If ψ were equidistributed:

P(observing ψ in E ⊂ Y ) =
Vol(E )
Vol(Y )

=

ˆ
Y
1E đVol

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 4 / 40



Quantum particles

Renormalize volume measure: đVol = dVol
Vol(Y )

Quantum particle ⇝ ψ ∈ L2(Y , đVol) with ||ψ||2 = 1

P(observing ψ in E ⊂ Y ) =

ˆ
E
|ψ|2 đVol

=

ˆ
Y
1E · |ψ|2 đVol

If ψ were equidistributed:

P(observing ψ in E ⊂ Y ) =
Vol(E )
Vol(Y )

=

ˆ
Y
1E đVol

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 4 / 40



The Laplacian

Eigendata of ∆:

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . eigenvalues of ∆

{ψj} ONB of eigenfunctions of ∆

In QM, ψj has energy h2λj . Let hj = 1√
λj

.

fix h and let λj → ∞ ≈ fix energy and let hj → 0

As λj → ∞, should “recover” ergodicity ⇝ ψj equidistributes
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Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de
Verdiere)

Let a ∈ C∞(Y ). Then

lim
λ→∞

1
#{j : λj ≤ λ}

∑
j :λj≤λ

∣∣∣ ˆ
Y
a · |ψj |2 đVol −

ˆ
Y
a đVol

∣∣∣2 = 0.

Average over eigenfunctions with eigenvalue less than λ
Compare the measures |ψj |2đVol and đVol weakly (integrate against
test function)
Interpretations:

1 Generic high energy quantum particles equidistribute.
2 Generic bounded energy quantum particles equidistribute as h → 0.
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QE in large eigenvalue limit vs. QE in the BS limit

Eigenvalues of ∆ lie in [0,∞)

QE in the large eigenvalue limit:

fix the manifold & vary the spectral window

0 λ→ ∞

QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold

0 1
4 I
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Benjamini-Schramm convergence

(Yn) Benjamini-Schramm converges to H if, for
every R > 0,

lim
n→∞

Vol
(
{y ∈ Yn : InjRadYn

(y) ≤ R}
)

Vol(Yn)
= 0.

Interpretation: most points have arbitrarily large
injectivity radius

Spectrum of ∆ on H is [14 ,∞).
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QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten ’17)

Suppose (Yn) is a sequence of compact hyperbolic surfaces s.t.

1 Benjamini-Schramm convergence: Yn
BS−−→ H.

2 Uniform spectral gap: λ(n)1 bounded away from 0 for all n.
3 Uniform discreteness: InjRad(Yn) bounded away from 0 for all n.

Let {ψ(n)
j } be ONB of eigenfunctions for ∆ acting on L2(Yn) with

eigenvalues 0 = λ
(n)
0 ≤ λ

(n)
1 ≤ . . . . Let I ⊂ (1

4 ,∞) be a compact
subinterval. Let an ∈ L∞(Yn) with uniformly bounded L∞-norm. Then

lim
n→∞

1

#{j : λ(n)j ∈ I}

∑
j :λ

(n)
j ∈I

∣∣∣∣∣
ˆ
Yn

an · |ψ(n)
j |2 đVol −

ˆ
Yn

an đVol

∣∣∣∣∣
2

= 0.
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Real and p-adic (locally) symmetric spaces

rank one higher rank

archimedean hyperbolic surfaces symmetric spaces

non-archimedean regular graphs Bruhat-Tits buildings
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Quantization in higher rank

rank one → geod. flow ergodic
(R-action)

→ QE involves ∆

higher rank → geod. flow NOT ergodic
(BUT ergodic Rk -action)

→ QE involves k operators
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Symmetric spaces

G = semisimple Lie group over R (w/o compact factors)
X is associated Riemannian manifold called symmetric space
X = G/K with K a maximal compact subgroup
D(G ,K ) = G -invariant differential operators on X

Fact: D(G ,K ) generated by k operators

G = SL(2,R)
X = H
K = SO(2)

D(G ,K ) = algebra generated by ∆
Figure: ∆ closely related to averaging
over spheres in H
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Bruhat-Tits buildings

G = semisimple algebraic group over F (non-archimedean local field)
B is associated simplicial complex called Bruhat-Tits building
B ≈ G/K with K a hyperspecial maximal compact subgroup
H(G ,K ) ≈ G -invariant geometric operators (spherical Hecke algebra)
Fact: H(G ,K ) generated by k operators

G = PGL(2,Qp)

B = infinite (p + 1)-regular tree
G/K = vertices of B

K = PGL(2,Zp)

H(G ,K ) = alg. gen.’d by adj. op. A Figure: Adjacency operator A on tree
involves summing over sphere of radius 1
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Buildings are composed of branching apartments

Figure: An apartment in the tree is a bi-infinite geodesic.
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An apartment in the Bruhat-Tits building of PGL(3,F )
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Branching apartments
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H(G ,K ) generated by refinements of adjacency operator
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Quotients of X and B

Γ < G cocompact, torsionfree lattice

Γ\G/K is

{
locally symmetric space (e.g. hyperbolic surface)
finite simplicial complex (e.g. finite regular graph)

G/K is universal cover
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Joint eigenfunctions and spectral parameters

Let C = either D(G ,K ) or H(G ,K )

C generated by k operators A1, . . . ,Ak

C ↷ L2(Γ\G/K ) =
⊕
j

Cψj (joint eigenfunctions)

νj = k-tuple of eigenvalues (spectral parameter)
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Tempered spectrum

{k-tuples} ↔
{

irreps of C
(all 1-dim.)

}
↔


admissible irreps of G
with K -fixed vector
(spherical repns)


Tempered spectrum:

Ω+
temp ↔


spectrum of

C ↷ L2(G/K )
universal cover

 ↔
{

spherical repns
in L2(G )

}

0 1
4

Figure: Ω+
temp for ∆ on H is [1/4,∞)

−(q + 1)

−2√q 2√q

q + 1

Figure: Ω+
temp for A on (q + 1)-regular

tree is [−2
√
q, 2

√
q]
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BS convergence implies Plancherel convergence

Figure: Distribution of eigenvalues for large random 3-regular graph

#{j : λ(n)j ∈ I}
Vol(Yn)

→ µ(I)
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Framework for QE in the BS limit

Suppose Yn = Γn\H with Γn cocompact, torsionfree lattices s.t.

1 Benjamini-Schramm convergence: Yn
BS−−→ H

2 Uniform spectral gap for ∆ ↷ L2(Yn)

3 Uniform discreteness
For each Yn let {ψ(n)

j } be ONB of eigenfunctions of ∆ ↷ L2(Yn) with

associated eigenvalues λ(n)j . Let I ⊂ (1/4,∞) be a compact interval. Let
an ∈ L∞(Yn) with uniform L∞-bound. Then we expect

lim
n→∞

1

#{j : λ(n)j ∈ I}

∑
j :λ

(n)
j ∈I

∣∣∣∣∣
ˆ
Yn

an · |ψ(n)
j |2 đVol −

ˆ
Yn

an đVol

∣∣∣∣∣
2

= 0.
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Preceding literature on QE in the BS limit

Anantharaman-Le Masson ’15 - set up the framework for QE in the
BS limit and proved it for regular graphs
Brooks-Le Masson-Lindenstrauss ’16 - reproved QE in the BS limit for
regular graphs using wave propagator method
Le Masson-Sahlsten ’17 - QE in the BS limit for hyperbolic surfaces
using wave propagator; incorporated an ergodic theorem of Nevo
Abert-Bergeron-Le Masson ’18 - QE in the BS limit for rank one
locally symmetric spaces
Brumley-Matz ’22 - QE in the BS limit for SL(d ,R)/SO(d);
introduced polytopal ball averaging operators; mistake in the
geometric bound
P. ’23 - QE in the BS limit for the Bruhat-Tits building associated to
PGL(3,F ) where F is a non-archimedean local field of arbitrary
characteristic; new method for the geometric bound
Brumley-Marshall-Matz-P. ’24+ - fix the mistake for SL(d ,R); new
method may work for all symmetric spaces except type F4 and G2
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Bruhat-Tits buildings as natural next setting

rank one higher rank

archimedean hyperbolic surfaces SL(d ,R)/SO(d)

non-archimedean regular graphs PGL(3,F )/PGL(3,O)

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 24 / 40



Bruhat-Tits buildings as natural next setting

rank one higher rank

archimedean hyperbolic surfaces SL(d ,R)/SO(d)

non-archimedean regular graphs PGL(3,F )/PGL(3,O)

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 24 / 40



Bruhat-Tits buildings as natural next setting

rank one higher rank

archimedean hyperbolic surfaces SL(d ,R)/SO(d)

non-archimedean regular graphs PGL(3,F )/PGL(3,O)

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 24 / 40



Bruhat-Tits buildings as natural next setting

rank one higher rank

archimedean hyperbolic surfaces SL(d ,R)/SO(d)

non-archimedean regular graphs PGL(3,F )/PGL(3,O)

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 24 / 40



Bruhat-Tits buildings as natural next setting

rank one higher rank

archimedean hyperbolic surfaces SL(d ,R)/SO(d)

non-archimedean regular graphs PGL(3,F )/PGL(3,O)

Carsten Peterson (Paderborn University) QE in the BS limit May 28, 2024 24 / 40



Main Theorem (P. ’23)

Let G = PGL(3,F ) and K = PGL(3,O), where F is a non-archimedean
local field of arbitrary characteristic and O is its ring of integers.

Suppose Yn = Γn\G/K with Γn cocompact, torsionfree lattices s.t.
1 Benjamini-Schramm convergence: Yn

BS−−→ G/K
2 Uniform spectral gap for H(G ,K ) ↷ L2(Yn)
3 Uniform discreteness

For each Yn let {ψ(n)
j } be an ONB of eigenfunctions of H(G ,K ) ↷ L2(Yn)

with spectral parameters ν(n)j . Let Θ ⊂ Ω+
temp be compact, have positive

Plancherel measure, and not meet a codimension one exceptional locus Ξ.
Let an ∈ L∞(Yn) with uniform L∞-bound and orthogonal to coloring
eigenfunctions. Then

lim
n→∞

1

#{j : ν(n)j ∈ Θ}

∑
j :ν

(n)
j ∈Θ

∣∣∣∣∣
ˆ
Yn

an · |ψ(n)
j |2 đVol −

ˆ
Yn

an đVol

∣∣∣∣∣
2

= 0.
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Coloring eigenfunctions

Sometimes Γ\G/K has a non-trivial coloring

Coloring gives “trivial” coloring eigenfunctions

Generalization of eigenfunction associated to
−(q + 1) for regular bipartite graphs
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The tempered spectrum and the exceptional locus
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Preceding literature on QE in the BS limit

Anantharaman-Le Masson ’15 - set up the framework for QE in the
BS limit and proved it for regular graphs
Brooks-Le Masson-Lindenstrauss ’16 - reproved QE in the BS limit for
regular graphs using wave propagator method
Le Masson-Sahlsten ’17 - QE in the BS limit for hyperbolic surfaces
using wave propagator; incorporated an ergodic theorem of Nevo
Abert-Bergeron-Le Masson ’18 - QE in the BS limit for rank one
locally symmetric spaces
Brumley-Matz ’22 - QE in the BS limit for SL(d ,R)/SO(d);
introduced polytopal ball averaging operators; mistake in the
geometric bound
P. ’23 - QE in the BS limit for the Bruhat-Tits building associated to
PGL(3,F ) where F is a non-archimedean local field of arbitrary
characteristic; new method for the geometric bound
Brumley-Marshall-Matz-P. ’24+ - fix the mistake for SL(d ,R); new
method may work for all symmetric spaces except type F4 and G2
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Weyl chamber parametrizes relative positions

Figure: Half geodesics (Weyl chambers) parametrize relative positions
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Metric balls in the tree are polytopal balls

Figure: A polytope (line segment) in the Weyl chamber corresponds to a ball in
the tree
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Polytopes in Weyl chamber define polytopal balls
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Main Theorem (P. ’23)

Let G = PGL(3,F ) and K = PGL(3,O), where F is a non-archimedean
local field of arbitrary characteristic and O is its ring of integers.

Suppose Yn = Γn\G/K with Γn cocompact, torsionfree lattices s.t.
1 Benjamini-Schramm convergence: Yn

BS−−→ G/K
2 Uniform spectral gap for H(G ,K ) ↷ L2(Yn)
3 Uniform discreteness

For each Yn let {ψ(n)
j } be an ONB of eigenfunctions of H(G ,K ) ↷ L2(Yn)

with spectral parameters ν(n)j . Let Θ ⊂ Ω+
temp be compact, have positive

Plancherel measure, and not meet a codimension one exceptional locus Ξ.
Let an ∈ L∞(Yn) with uniform L∞-bound and orthogonal to coloring
eigenfunctions. Then

lim
n→∞

1

#{j : ν(n)j ∈ Θ}

∑
j :ν

(n)
j ∈Θ

∣∣∣∣∣
ˆ
Yn

an · |ψ(n)
j |2 đVol −

ˆ
Yn

an đVol

∣∣∣∣∣
2

= 0.
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Wave propagator to geometric bound

AM = wave propagator
Um ≈ avg over polytopal ball
Pm(x) = polytopal ball centered at x∑∣∣∣ ˆ

Yn

an · |ψ(n)
j |2 đVol

∣∣∣2 =
∑∣∣⟨ψ(n)

j , an · ψ(n)
j ⟩

∣∣2 ≲ ∑
all ψ(n)

j

||AMψ
(n)
j ||2

Analyze kernel function

U∗
m ◦ an ◦ Um

↓
integrate an over Pm(x) ∩ Pm(y)

↓
convolution op. assoc.

to Pm(x) ∩ Pm(y)

Ergodic theorem of Nevo

norm of
conv. op.

≲
1

Vol
(
Pm(x) ∩ Pm(y)

)δ
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My method for geometric bound applied to the regular tree

x y

Figure: P8(x) ∩ P8(y) on 3-regular tree with d(x , y) = 6

Goal: compute volume of intersection (number of vertices)
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My method (cont.): polytopal parametrization

x y

w

z

Figure: w is confluence point: geod(x ,w) ∩ geod(y ,w) = {w}

x yw

z
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My method (cont.): Brion’s formula

z gets assigned coordinates (α, β):

α = # of steps along geod(x , y) to reach confluence point
β = # of steps from confluence point to z

#{z with coordinates (α, β)} ≈ qβ = q

〈
(0,1),(α,β)

〉
Brion’s formula for exponential sum over lattice points in polytope:∑

λ∈Q∩Zn

q⟨f ,λ⟩ =
∑

vertices v of Q

Cvq
⟨f ,v⟩

(
in this case f = (0, 1)

)
Dominating term comes from v which maximizes q⟨f ,v⟩

Cv are constants depending on f and the cone at vertex v
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My method (cont.): polytopal parametrization

x y

Figure: w is confluence point: geod(x ,w) ∩ geod(y ,w) = {w}

x y
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My method (cont.): polytopal parametrization
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My method (cont.): confluence points

z gets assigned coordinates (α, β):

α = # of steps along geod(x , y) to reach confluence point
β = # of steps from confluence point to z
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My method (cont.): confluence points for PGL(3,F )

x

y

w

Figure: Confluence points satisfy para(x ,w) ∩ para(y ,w) = {w}

To set up coordinatization for triples of points in the building, first
need to classify confluence points.
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