Quantum ergodicity on the Bruhat-Tits building for PGL(3,F) in the Benjamini-Schramm limit

Carsten Peterson
Universität Paderborn

December 13, 2023

Geodesic flow on hyperbolic surface

- Y compact hyperbolic surface
- $\Phi_{t} \curvearrowright T^{1} Y$ geodesic flow

curvature $<0 \Longrightarrow \Phi_{t}$ is ergodic
\Longrightarrow generic geodesics equidistribute

Geodesic flow on hyperbolic surface

- Y compact hyperbolic surface
- $\Phi_{t} \curvearrowright T^{1} Y$ geodesic flow

curvature $<0 \Longrightarrow \Phi_{t}$ is ergodic
\Longrightarrow generic geodesics equidistribute

Classical and quantum mechanics on Y

$$
\text { classical mechanics } \approx \begin{gathered}
\Phi_{t} \curvearrowright T^{1} Y \\
\text { geodesic flow }
\end{gathered}
$$

Classical and quantum mechanics on Y

classical mechanics $\approx \begin{gathered}\Phi_{t} \curvearrowright T^{1} Y \\ \text { geodesic flow }\end{gathered}$

Classical and quantum mechanics on Y

classical mechanics $\approx \begin{gathered}\Phi_{t} \curvearrowright T^{1} Y \\ \text { geodesic flow }\end{gathered}$

Classical and quantum mechanics on Y

classical mechanics $\approx \begin{gathered}\Phi_{t} \curvearrowright T^{1} Y \\ \text { geodesic flow }\end{gathered}$

Quantum particles

- Renormalize volume measure: $đ \mathrm{Vol}=\frac{d \mathrm{Vol}}{\mathrm{Vol}(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^{2}(Y$, đVol $)$ with $\|\psi\|_{2}=1$
- If ψ were equidistributed:

Quantum particles

- Renormalize volume measure: $đ \mathrm{Vol}=\frac{d \mathrm{Vol}}{\mathrm{Vol}(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^{2}(Y, đ \mathrm{Vol})$ with $\|\psi\|_{2}=1$

- If ψ were equidistributed:

Quantum particles

- Renormalize volume measure: $đ \mathrm{Vol}=\frac{d \mathrm{Vol}}{\mathrm{Vol}(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^{2}(Y$, đVol $)$ with $\|\psi\|_{2}=1$

$$
\begin{aligned}
\mathbb{P}(\text { observing } \psi \text { in } E \subset Y) & =\int_{E}|\psi|^{2} đ \mathrm{Vol} \\
& =\int_{Y} \mathbb{1}_{E} \cdot|\psi|^{2} đ \mathrm{Vol}
\end{aligned}
$$

- If ψ were equidistributed:

Quantum particles

- Renormalize volume measure: $đ \mathrm{Vol}=\frac{d \mathrm{Vol}}{\mathrm{Vol}(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^{2}(Y, đ$ Vol $)$ with $\|\psi\|_{2}=1$

$$
\begin{aligned}
\mathbb{P}(\text { observing } \psi \text { in } E \subset Y) & =\int_{E}|\psi|^{2} đ \mathrm{Vol} \\
& =\int_{Y} \mathbb{1}_{E} \cdot|\psi|^{2} đ \mathrm{Vol}
\end{aligned}
$$

- If ψ were equidistributed:
$\mathbb{P}($ observing ψ in $E \subset Y)=\frac{\operatorname{Vol}(E)}{\operatorname{Vol}(Y)}$

Quantum particles

- Renormalize volume measure: $đ \mathrm{Vol}=\frac{d \mathrm{Vol}}{\mathrm{Vol}(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^{2}(Y, đ$ Vol $)$ with $\|\psi\|_{2}=1$

$$
\begin{aligned}
\mathbb{P}(\text { observing } \psi \text { in } E \subset Y) & =\int_{E}|\psi|^{2} đ \mathrm{Vol} \\
& =\int_{Y} \mathbb{1}_{E} \cdot|\psi|^{2} đ \mathrm{Vol}
\end{aligned}
$$

- If ψ were equidistributed:

$$
\begin{aligned}
\mathbb{P}(\text { observing } \psi \text { in } E \subset Y) & =\frac{\operatorname{Vol}(E)}{\operatorname{Vol}(Y)} \\
& =\int_{Y} \mathbb{1}_{E} \text { đVol }
\end{aligned}
$$

Quantum particles

- Renormalize volume measure: $đ \mathrm{Vol}=\frac{d \mathrm{Vol}}{\mathrm{Vol}(Y)}$
- Quantum particle $\rightsquigarrow \psi \in L^{2}(Y, đ$ Vol $)$ with $\|\psi\|_{2}=1$

$$
\begin{aligned}
\mathbb{P}(\text { observing } \psi \text { in } E \subset Y) & =\int_{E}|\psi|^{2} đ \mathrm{Vol} \\
& =\int_{Y} \mathbb{1}_{E} \cdot|\psi|^{2} đ \mathrm{Vol}
\end{aligned}
$$

- If ψ were equidistributed:

$$
\begin{aligned}
\mathbb{P}(\text { observing } \psi \text { in } E \subset Y) & =\frac{\operatorname{Vol}(E)}{\operatorname{Vol}(Y)} \\
& =\int_{Y} \mathbb{1}_{E} \text { đVol }
\end{aligned}
$$

The Laplacian

- Eigendata of Δ :

$$
0=\lambda_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \quad \text { eigenvalues of } \Delta
$$

$\left\{\psi_{j}\right\} \quad$ ONB of eigenfunctions of Δ

- In QM, ψ_{j} has energy $h^{2} \lambda_{j}$. Let $h_{j}=\frac{1}{\sqrt{\lambda_{j}}}$.
fix h and let $\lambda_{j} \rightarrow \infty \approx$ fix energy and let $h_{j} \rightarrow 0$
- As $\lambda_{j} \rightarrow \infty$, should "recover" ergodicity $\rightsquigarrow \psi_{j}$ equidistributes

The Laplacian

- Eigendata of Δ :

$$
0=\lambda_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \quad \text { eigenvalues of } \Delta
$$

$$
\left\{\psi_{j}\right\} \quad \text { ONB of eigenfunctions of } \Delta
$$

- In QM, ψ_{j} has energy $h^{2} \lambda_{j}$. Let $h_{j}=\frac{1}{\sqrt{\lambda_{j}}}$. fix h and let $\lambda_{j} \rightarrow \infty \approx$ fix energy and let $h_{j} \rightarrow 0$
- As $\lambda_{j} \rightarrow \infty$, should "recover" ergodicity $\rightsquigarrow \psi_{j}$ equidistributes

The Laplacian

- Eigendata of Δ :

$$
0=\lambda_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \quad \text { eigenvalues of } \Delta
$$

$$
\left\{\psi_{j}\right\} \quad \text { ONB of eigenfunctions of } \Delta
$$

- In QM, ψ_{j} has energy $h^{2} \lambda_{j}$. Let $h_{j}=\frac{1}{\sqrt{\lambda_{j}}}$.
fix h and let $\lambda_{j} \rightarrow \infty \approx$ fix energy and let $h_{j} \rightarrow 0$
- As $\lambda_{j} \rightarrow \infty$, should "recover" ergodicity $\rightsquigarrow \psi_{j}$ equidistributes

The Laplacian

- Eigendata of Δ :

$$
\begin{array}{cc}
0=\lambda_{0} \leq & \lambda_{1} \leq \lambda_{2} \leq \ldots \\
\left\{\psi_{j}\right\} & \text { eigenvalues of } \Delta \\
\text { ONB of eigenfunctions of } \Delta
\end{array}
$$

- In QM, ψ_{j} has energy $h^{2} \lambda_{j}$. Let $h_{j}=\frac{1}{\sqrt{\lambda_{j}}}$.
fix h and let $\lambda_{j} \rightarrow \infty \approx$ fix energy and let $h_{j} \rightarrow 0$
- As $\lambda_{j} \rightarrow \infty$, should "recover" ergodicity $\rightsquigarrow \psi_{j}$ equidistributes

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)
Let $a \in C^{\infty}(Y)$. Then

$$
\left.\lim _{\lambda \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j} \leq \lambda\right\}} \sum_{j: \lambda_{j} \leq \lambda}\left|\int_{Y} a \cdot\right| \psi_{j}\right|^{2} \text { đVol }-\int_{Y} a \text { đVol }\left.\right|^{2}=0
$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $\left|\psi_{j}\right|^{2} đ$ Vol and đVol weakly
- Interpretations:

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)
Let $a \in C^{\infty}(Y)$. Then

$$
\left.\lim _{\lambda \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j} \leq \lambda\right\}} \sum_{j: \lambda_{j} \leq \lambda}\left|\int_{Y} a \cdot\right| \psi_{j}\right|^{2} \text { đVol }-\int_{Y} a \text { đVol }\left.\right|^{2}=0
$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $\left|\psi_{j}\right|^{2}$ đVol and đVol weakly
- Interpretations:

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)
Let $a \in C^{\infty}(Y)$. Then

$$
\left.\lim _{\lambda \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j} \leq \lambda\right\}} \sum_{j: \lambda_{j} \leq \lambda}\left|\int_{Y} a \cdot\right| \psi_{j}\right|^{2} \text { đVol }-\int_{Y} a \text { đVol }\left.\right|^{2}=0
$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $\left|\psi_{j}\right|^{2} đ \bigvee o l$ and đVol weakly (integrate against test function)
- Interpretations:

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)
Let $a \in C^{\infty}(Y)$. Then

$$
\left.\lim _{\lambda \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j} \leq \lambda\right\}} \sum_{j: \lambda_{j} \leq \lambda}\left|\int_{Y} a \cdot\right| \psi_{j}\right|^{2} \text { đVol }-\int_{Y} a \text { đVol }\left.\right|^{2}=0
$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $\left|\psi_{j}\right|^{2} đ \mathrm{Vol}$ and đVol weakly (integrate against test function)
- Interpretations:

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)
Let $a \in C^{\infty}(Y)$. Then

$$
\left.\lim _{\lambda \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j} \leq \lambda\right\}} \sum_{j: \lambda_{j} \leq \lambda}\left|\int_{Y} a \cdot\right| \psi_{j}\right|^{2} \text { đVol }-\int_{Y} a \text { đVol }\left.\right|^{2}=0
$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $\left|\psi_{j}\right|^{2}$ đVol and đVol weakly (integrate against test function)
- Interpretations:
(1) Generic high energy quantum particles equidistribute.

Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de Verdiere)
Let $a \in C^{\infty}(Y)$. Then

$$
\left.\lim _{\lambda \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j} \leq \lambda\right\}} \sum_{j: \lambda_{j} \leq \lambda}\left|\int_{Y} a \cdot\right| \psi_{j}\right|^{2} \text { đVol }-\int_{Y} a \text { đVol }\left.\right|^{2}=0
$$

- Average over eigenfunctions with eigenvalue less than λ
- Compare the measures $\left|\psi_{j}\right|^{2} đ \mathrm{Vol}$ and đVol weakly (integrate against test function)
- Interpretations:
(1) Generic high energy quantum particles equidistribute.
(2) Generic bounded energy quantum particles equidistribute as $h \rightarrow 0$.

Visualization of quantum ergodicity

Figure: Image made by Alex Barnett

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:
- QE in the Benjamini-Schramm limit:
fix the spectral window \& vary the manifold

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:
fix the manifold \& vary the spectral window
- QE in the Benjamini-Schramm limit:
fix the spectral window \& vary the manifold

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:
fix the manifold \& vary the spectral window

- QE in the Benjamini-Schramm limit:
fix the spectral window \& vary the manifold

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:
fix the manifold \& vary the spectral window

- QE in the Benjamini-Schramm limit:
fix the spectral window \& vary the manifold

QE in large eigenvalue limit vs. QE in the BS limit

- Eigenvalues of Δ lie in $[0, \infty)$
- QE in the large eigenvalue limit:
fix the manifold \& vary the spectral window

- QE in the Benjamini-Schramm limit:
fix the spectral window \& vary the manifold

Benjamini-Schramm convergence

$\left(Y_{n}\right)$ Benjamini-Schramm converges to \mathbb{H} if, for every $R>0$,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Vol}_{n \rightarrow}\left(\left\{y \in Y_{n}: \operatorname{lnjRad}_{Y_{n}}(y) \leq R\right\}\right)}{\operatorname{Vol}\left(Y_{n}\right)}=0 .
$$

Interpretation: most points have arbitrarily large injectivity radius

Spectrum of Δ on \mathbb{H} is $\left[\frac{1}{4}, \infty\right)$.

Benjamini-Schramm convergence

$\left(Y_{n}\right)$ Benjamini-Schramm converges to \mathbb{H} if, for every $R>0$,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Vol}^{\left(\left\{y \in Y_{n}: \operatorname{InjRad}_{Y_{n}}(y) \leq R\right\}\right)}}{\operatorname{Vol}\left(Y_{n}\right)}=0 .
$$

Interpretation: most points have arbitrarily large injectivity radius

Spectrum of Δ on \mathbb{H} is $\left[\frac{1}{4}, \infty\right)$

Benjamini-Schramm convergence

$\left(Y_{n}\right)$ Benjamini-Schramm converges to \mathbb{H} if, for every $R>0$,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Vol}^{\left(\left\{y \in Y_{n}: \operatorname{lnjRad}_{Y_{n}}(y) \leq R\right\}\right)}}{\operatorname{Vol}\left(Y_{n}\right)}=0 .
$$

Interpretation: most points have arbitrarily large injectivity radius

> Spectrum of Δ on HI is $\left[\frac{1}{4}, \infty\right)$

Benjamini-Schramm convergence

$\left(Y_{n}\right)$ Benjamini-Schramm converges to \mathbb{H} if, for every $R>0$,

$$
\lim _{n \rightarrow \infty} \frac{\left.\left.\operatorname{Vol}_{n \rightarrow Y_{n}}: \operatorname{InjRad}_{Y_{n}}(y) \leq R\right\}\right)}{\operatorname{Vol}\left(Y_{n}\right)}=0 .
$$

Interpretation: most points have arbitrarily large injectivity radius

Spectrum of Δ on \mathbb{H} is $\left[\frac{1}{4}, \infty\right)$.

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{Inj} \operatorname{Rad}\left(Y_{n}\right)$ bounded away from 0 for all n Let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions for Δ acting on $L^{2}\left(Y_{n}\right)$ with eigenvalues $0=\lambda_{0}^{(n)} \leq \lambda_{1}^{(n)} \leq \ldots$ Let $\mathcal{I} \subset\left(\frac{1}{4}, \infty\right)$ be a compact subinterval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniformly bounded L^{∞}-norm. Then

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{Inj} \operatorname{Rad}\left(Y_{n}\right)$ bounded away from 0 for all n. Let $\left.\{u)^{(n)}\right\}$ be ONB of eigenfunctions for \triangle acting on $L^{2}\left(Y_{n}\right)$ with eigenvalues $0=\lambda_{0}^{(n)} \leq \lambda_{1}^{(n)} \leq \ldots$. Let $\mathcal{I} \subset\left(\frac{1}{4}, \infty\right)$ be a compact
subinterval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniformly bounded L^{∞}-norm. Then

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{InjRad}\left(Y_{n}\right)$ bounded away from 0 for all n. Let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions for Δ acting on $L^{2}\left(Y_{n}\right)$ with eigenvalues $0=\lambda_{0}^{(n)} \leq \lambda_{1}^{(n)} \leq \ldots$. Let $\mathcal{I} \subset\left(\frac{1}{\lambda}, \infty\right)$ be a compact
subinterval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniformly bounded L^{∞}-norm. Then

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{Inj} \operatorname{Rad}\left(Y_{n}\right)$ bounded away from 0 for all n.

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{InjRad}\left(Y_{n}\right)$ bounded away from 0 for all n. Let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions for Δ acting on $L^{2}\left(Y_{n}\right)$ with eigenvalues $0=\lambda_{0}^{(n)} \leq \lambda_{1}^{(n)} \leq \ldots$. subinterval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniformly bounded $L^{\infty}-n o r m$. Then

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{InjRad}\left(Y_{n}\right)$ bounded away from 0 for all n. Let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions for Δ acting on $L^{2}\left(Y_{n}\right)$ with eigenvalues $0=\lambda_{0}^{(n)} \leq \lambda_{1}^{(n)} \leq \ldots$ Let $\mathcal{I} \subset\left(\frac{1}{4}, \infty\right)$ be a compact subinterval.

Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniformly
bounded L ${ }^{\infty}$-norm.

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{InjRad}\left(Y_{n}\right)$ bounded away from 0 for all n. Let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions for Δ acting on $L^{2}\left(Y_{n}\right)$ with eigenvalues $0=\lambda_{0}^{(n)} \leq \lambda_{1}^{(n)} \leq \ldots$. Let $\mathcal{I} \subset\left(\frac{1}{4}, \infty\right)$ be a compact subinterval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniformly bounded L^{∞}-norm.

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{InjRad}\left(Y_{n}\right)$ bounded away from 0 for all n. Let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions for Δ acting on $L^{2}\left(Y_{n}\right)$ with eigenvalues $0=\lambda_{0}^{(n)} \leq \lambda_{1}^{(n)} \leq \ldots$ Let $\mathcal{I} \subset\left(\frac{1}{4}, \infty\right)$ be a compact subinterval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniformly bounded L^{∞}-norm. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\left.\int_{Y_{n}} a_{n} đ \vee \mathrm{Vol}\right|^{2}=0
$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{InjRad}\left(Y_{n}\right)$ bounded away from 0 for all n. Let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions for Δ acting on $L^{2}\left(Y_{n}\right)$ with eigenvalues $0=\lambda_{0}^{(n)} \leq \lambda_{1}^{(n)} \leq \ldots$ Let $\mathcal{I} \subset\left(\frac{1}{4}, \infty\right)$ be a compact subinterval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniformly bounded L^{∞}-norm. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\left.\int_{Y_{n}} a_{n} đ \mathrm{Vol}\right|^{2}=0
$$

QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)
Suppose $\left(Y_{n}\right)$ is a sequence of compact hyperbolic surfaces s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$.
(2) Uniform spectral gap: $\lambda_{1}^{(n)}$ bounded away from 0 for all n.
(3) Uniform discreteness: $\operatorname{InjRad}\left(Y_{n}\right)$ bounded away from 0 for all n. Let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions for Δ acting on $L^{2}\left(Y_{n}\right)$ with eigenvalues $0=\lambda_{0}^{(n)} \leq \lambda_{1}^{(n)} \leq \ldots$ Let $\mathcal{I} \subset\left(\frac{1}{4}, \infty\right)$ be a compact subinterval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniformly bounded L^{∞}-norm. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \bigvee o l-\int_{Y_{n}} a_{n} đ \vee o l| |^{2}=0
$$

Real and p-adic (locally) symmetric spaces

Real and p-adic (locally) symmetric spaces

Real and p-adic (locally) symmetric spaces

	rank one	higher rank
archimedean	hyperbolic surfaces	symmetric spaces
non-archimedean	regular graphs	Bruhat-Tits buildings

Real and p-adic (locally) symmetric spaces

	rank one	higher rank
	archimedean	hyperbolic surfaces
symmetric spaces		
	non-archimedean	regular graphs
	Bruhat-Tits buildings	

Quantization in higher rank

rank one \rightarrow
geod. flow ergodic (\mathbb{R}-action)
geod. flow NOT ergodic (BUT ergodic \mathbb{R}^{k}-action)

Quantization in higher rank

rank one \rightarrow
geod. flow ergodic (\mathbb{R}-action)

QE involves Δ

Quantization in higher rank

rank one
geod. flow ergodic (\mathbb{R}-action)
\longrightarrow
QE involves Δ
geod. flow NOT ergodic (BUT ergodic \mathbb{R}^{k}-action)

Quantization in higher rank

rank one
geod. flow ergodic (\mathbb{R}-action)

QE involves Δ

Symmetric spaces

- $G=$ semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called symmetric space
- $X=G / K$ with K a maximal compact subgroup
- $D(G, K)=G$-invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators
$G=\operatorname{SL}(2, \mathbb{R})$
$X=\mathbb{H}$
$K=\mathrm{SO}(2)$
$D(G, K)=$ algebra generated by \triangle
Figure: Δ closely related to averaging over spheres in \mathbb{H}

Symmetric spaces

- $G=$ semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called symmetric space
- $X=G / K$ with K a maximal compact subgroup
- $D(G, K)=G$-invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators
$G=S L(2, \mathbb{R})$
$X=\mathbb{H}$
$K=S O(2)$
$D(G, K)=$ algebra generated by Δ
Figure: Δ closely related to averaging
over spheres in \mathbb{H}

Symmetric spaces

- $G=$ semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called symmetric space
- $X=G / K$ with K a maximal compact subgroup
- $D(G, K)=G$-invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators

$$
\begin{aligned}
& G=\mathrm{SL}(2, \mathbb{R}) \\
& X=\mathbb{H} \\
& K=\mathrm{SO}(2)
\end{aligned}
$$

$D(G, K)=$ algebra generated by \triangle

Symmetric spaces

- $G=$ semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called symmetric space
- $X=G / K$ with K a maximal compact subgroup
- $D(G, K)=G$-invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators

$$
\begin{aligned}
G & =\mathrm{SL}(2, \mathbb{R}) \\
X & =\mathbb{H} \\
K & =\mathrm{SO}(2) \\
D(G, K) & =\text { algebra generated by } \Delta
\end{aligned}
$$

Symmetric spaces

- $G=$ semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called symmetric space
- $X=G / K$ with K a maximal compact subgroup
- $D(G, K)=G$-invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators

$$
\begin{aligned}
G & =\mathrm{SL}(2, \mathbb{R}) \\
X & =\mathbb{H} \\
K & =\mathrm{SO}(2) \\
D(G, K) & =\text { algebra generated by } \Delta
\end{aligned}
$$

Symmetric spaces

- $G=$ semisimple Lie group over \mathbb{R} (w/o compact factors)
- X is associated Riemannian manifold called symmetric space
- $X=G / K$ with K a maximal compact subgroup
- $D(G, K)=G$-invariant differential operators on X
- Fact: $D(G, K)$ generated by k operators

$$
\begin{aligned}
& G=\mathrm{SL}(2, \mathbb{R}) \\
& X=\mathbb{H} \\
& K=\mathrm{SO}(2)
\end{aligned}
$$

$D(G, K)=$ algebra generated by Δ
Figure: Δ closely related to averaging over spheres in \mathbb{H}

Bruhat-Tits buildings

- $G=$ semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called Bruhat-Tits building
- $\mathcal{B} \approx G / K$ with K a hyperspecial maximal compact subgroup - $H(G, K) \approx G$-invariant geometric operators (spherical Hecke algebra) - Fact: $H(G, K)$ generated by k operators
$G=\operatorname{PGL}\left(2, \mathbb{Q}_{p}\right)$
$\mathcal{B}=$ infinite $(p+1)$-regular tree
$G / K=$ vertices of \mathcal{B}
$K=\operatorname{PGI}\left(2, \mathbb{Z}_{p}\right)$
 involves summing over sphere of radius 1

Bruhat-Tits buildings

- $G=$ semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called Bruhat-Tits building
\square
- Fact: $H(G, K)$ generated by k operators

$$
G=\operatorname{PGL}\left(2, \mathbb{Q}_{p}\right)
$$

$\mathcal{B}=$ infinite $(p+1)$-regular tree
$G / K=$ vertices of \mathcal{B}

Bruhat-Tits buildings

- $G=$ semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called Bruhat-Tits building
- $\mathcal{B} \approx G / K$ with K a hyperspecial maximal compact subgroup
- Fact: $H(G, K)$ generated by k operators
$G=\operatorname{PGL}\left(2, \mathbb{Q}_{p}\right)$
$\mathcal{B}=$ infinite $(p+1)$-regular tree
$G / K=$ vertices of \mathcal{B}

$$
K=\operatorname{PGL}\left(2, \mathbb{Z}_{p}\right)
$$

Bruhat-Tits buildings

- $G=$ semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called Bruhat-Tits building
- $\mathcal{B} \approx G / K$ with K a hyperspecial maximal compact subgroup
- $H(G, K) \approx G$-invariant geometric operators (spherical Hecke algebra)
$G=\operatorname{PGL}\left(2, \mathbb{Q}_{p}\right)$
$\mathcal{B}=$ infinite $(p+1)$-regular tree
$G / K=$ vertices of \mathcal{B}
$K=\operatorname{PGL}\left(2, \mathbb{Z}_{p}\right)$
$H(G, K)=$ alg. gen.'d by adj. op. \mathcal{A}

Bruhat-Tits buildings

- $G=$ semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called Bruhat-Tits building
- $\mathcal{B} \approx G / K$ with K a hyperspecial maximal compact subgroup
- $H(G, K) \approx G$-invariant geometric operators (spherical Hecke algebra)
- Fact: $H(G, K)$ generated by k operators

$$
G=\operatorname{PGL}\left(2, \mathbb{Q}_{p}\right)
$$

$$
\mathcal{B}=\text { infinite }(p+1) \text {-regular tree }
$$

$G / K=$ vertices of \mathcal{B}

$$
K=\operatorname{PGL}\left(2, \mathbb{Z}_{p}\right)
$$

$H(G, K)=$ alg. gen.'d by adj. op. \mathcal{A}

Bruhat-Tits buildings

- $G=$ semisimple algebraic group over F (non-archimedean local field)
- \mathcal{B} is associated simplicial complex called Bruhat-Tits building
- $\mathcal{B} \approx G / K$ with K a hyperspecial maximal compact subgroup
- $H(G, K) \approx G$-invariant geometric operators (spherical Hecke algebra)
- Fact: $H(G, K)$ generated by k operators

$$
G=\operatorname{PGL}\left(2, \mathbb{Q}_{p}\right)
$$

$$
\mathcal{B}=\text { infinite }(p+1) \text {-regular tree }
$$

$G / K=$ vertices of \mathcal{B}

$$
K=\operatorname{PGL}\left(2, \mathbb{Z}_{p}\right)
$$

$H(G, K)=$ alg. gen.'d by adj. op. \mathcal{A}

Figure: Adjacency operator \mathcal{A} on tree involves summing over sphere of radius 1

Buildings are composed of branching apartments

Figure: An apartment in the tree is a bi-infinite geodesic.

An apartment in the Bruhat-Tits building of $\operatorname{PGL}(3, F)$

(

Branching apartments

$H(G, K)$ generated by refinements of adjacency operator

$H(G, K)$ generated by refinements of adjacency operator

Quotients of X and \mathcal{B}

- $\Gamma<G$ cocompact, torsionfree lattice $\Gamma \backslash G / K$ is $\left\{\begin{array}{l}\text { locally symmetric space (e.g. hyperbolic surface) } \\ \text { finite simplicial complex (e.g. finite regular graph) }\end{array}\right.$
- G / K is universal cover

Quotients of X and \mathcal{B}

- $\Gamma<G$ cocompact, torsionfree lattice

$$
\Gamma \backslash G / K \text { is }\left\{\begin{array}{l}
\text { locally symmetric space (e.g. hyperbolic surface) } \\
\text { finite simplicial complex (e.g. finite regular graph) }
\end{array}\right.
$$

- G / K is universal cover

Quotients of X and \mathcal{B}

- $\Gamma<G$ cocompact, torsionfree lattice

$$
\Gamma \backslash G / K \text { is }\left\{\begin{array}{l}
\text { locally symmetric space (e.g. hyperbolic surface) } \\
\text { finite simplicial complex (e.g. finite regular graph) }
\end{array}\right.
$$

- G / K is universal cover

Quotients of X and \mathcal{B}

- $\Gamma<G$ cocompact, torsionfree lattice

$$
\Gamma \backslash G / K \text { is }\left\{\begin{array}{l}
\text { locally symmetric space (e.g. hyperbolic surface) } \\
\text { finite simplicial complex (e.g. finite regular graph) }
\end{array}\right.
$$

- G / K is universal cover

Joint eigenfunctions and spectral parameters

- Let $\mathcal{C}=$ either $D(G, K)$ or $H(G, K)$
- \mathcal{C} generated by k operators A_{1}, \ldots, A_{k}

Joint eigenfunctions and spectral parameters

- Let $\mathcal{C}=$ either $D(G, K)$ or $H(G, K)$
- \mathcal{C} generated by k operators A_{1}, \ldots, A_{k}

Joint eigenfunctions and spectral parameters

- Let $\mathcal{C}=$ either $D(G, K)$ or $H(G, K)$
- \mathcal{C} generated by k operators A_{1}, \ldots, A_{k}

$$
\mathcal{C} \curvearrowright L^{2}(\Gamma \backslash G / K)=\bigoplus_{j} \mathbb{C} \psi_{j} \quad \text { (joint eigenfunctions) }
$$

$\nu_{j}=k$-tuple of eigenvalues (spectral parameter)

Joint eigenfunctions and spectral parameters

- Let $\mathcal{C}=$ either $D(G, K)$ or $H(G, K)$
- \mathcal{C} generated by k operators A_{1}, \ldots, A_{k}

$$
\begin{gathered}
\mathcal{C} \curvearrowright L^{2}(\Gamma \backslash G / K)=\bigoplus_{j} \mathbb{C} \psi_{j} \text { (joint eigenfunctions) } \\
\nu_{j}=k \text {-tuple of eigenvalues (spectral parameter) }
\end{gathered}
$$

Tempered spectrum

$$
\{\text { k-tuples }\} \leftrightarrow\left\{\begin{array}{c}
\text { irreps of } \mathcal{C} \\
\text { (all 1-dim.) }
\end{array}\right\}
$$

admissible irreps of G with K-fixed vector (spherical repns)

Figure: $\Omega_{\text {temp }}^{+}$for \mathcal{A} on $(q+1)$-regular tree is $[-2 \sqrt{q}, 2 \sqrt{q}]$

Tempered spectrum

$$
\{k \text {-tuples }\} \leftrightarrow\left\{\begin{array}{c}
\text { irreps of } \mathcal{C} \\
\text { (all 1-dim.) }
\end{array}\right\}
$$

admissible irreps of G with K-fixed vector (spherical repns)

Tempered spectrum

$$
\{k \text {-tuples }\} \leftrightarrow\left\{\begin{array}{c}
\text { irreps of } \mathcal{C} \\
\text { (all 1-dim.) }
\end{array}\right\}
$$

admissible irreps of G with K-fixed vector (spherical repns)

- Tempered spectrum:

$$
\Omega_{\text {temp }}^{+} \leftrightarrow\left\{\begin{array}{c}
\text { spectrum of } \\
\mathcal{C} \curvearrowright L^{2}(G / K) \\
\text { universal cover }
\end{array}\right\}
$$

Tempered spectrum

$$
\{k \text {-tuples }\} \leftrightarrow\left\{\begin{array}{c}
\text { irreps of } \mathcal{C} \\
(\text { all } 1 \text {-dim. })
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { admissible irreps of } G \\
\text { with } K \text {-fixed vector } \\
(\text { spherical repns })
\end{array}\right\}
$$

- Tempered spectrum:

$$
\Omega_{\text {temp }}^{+} \leftrightarrow\left\{\begin{array}{c}
\text { spectrum of } \\
\mathcal{C} \curvearrowright L^{2}(G / K) \\
\text { universal cover }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { spherical repns } \\
\text { in } L^{2}(G)
\end{array}\right\}
$$

Tempered spectrum

$$
\{k \text {-tuples }\} \leftrightarrow\left\{\begin{array}{c}
\text { irreps of } \mathcal{C} \\
(\text { all } 1 \text {-dim.) })
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { admissible irreps of } G \\
\text { with } K \text {-fixed vector } \\
\text { (spherical repns) }
\end{array}\right\}
$$

- Tempered spectrum:

$$
\Omega_{\text {temp }}^{+} \leftrightarrow\left\{\begin{array}{c}
\text { spectrum of } \\
\mathcal{C} \curvearrowright L^{2}(G / K) \\
\text { universal cover }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { spherical repns } \\
\text { in } L^{2}(G)
\end{array}\right\}
$$

Figure: $\Omega_{\text {temp }}^{+}$for Δ on \mathbb{H} is $[1 / 4, \infty)$

Tempered spectrum

$$
\{k \text {-tuples }\} \leftrightarrow\left\{\begin{array}{c}
\text { irreps of } \mathcal{C} \\
(\text { all } 1 \text {-dim.) })
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { admissible irreps of } G \\
\text { with } K \text {-fixed vector } \\
\text { (spherical repns) }
\end{array}\right\}
$$

- Tempered spectrum:

$$
\Omega_{\text {temp }}^{+} \leftrightarrow\left\{\begin{array}{c}
\text { spectrum of } \\
\mathcal{C} \curvearrowright L^{2}(G / K) \\
\text { universal cover }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { spherical repns } \\
\text { in } L^{2}(G)
\end{array}\right\}
$$

Figure: $\Omega_{\text {temp }}^{+}$for Δ on \mathbb{H} is $[1 / 4, \infty)$
Figure: $\Omega_{\text {temp }}^{+}$for \mathcal{A} on $(q+1)$-regular tree is $[-2 \sqrt{q}, 2 \sqrt{q}]$

BS convergence implies Plancherel convergence

Figure: Distribution of eigenvalues for large random 3-regular graph

$$
\frac{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}}{\operatorname{Vol}\left(Y_{n}\right)} \rightarrow \mu(\mathcal{I})
$$

Framework for QE in the BS limit

Suppose $Y_{n}=\Gamma_{n} \backslash \mathbb{H}$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$
(2) Uniform spectral gap for $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$ with associated eigenvalues $\lambda_{j}^{(n)}$. Let $\mathcal{I} \subset(1 / 4, \infty)$ be a compact interval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound. Then we expect

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\left.\int_{Y_{n}} a_{n} đ \vee \mathrm{Vol}\right|^{2}=0
$$

Framework for QE in the BS limit

$$
\Gamma_{n} \backslash G / K
$$

Suppose $Y_{n}=\Gamma_{n} \backslash \mathbb{H}$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$
(2) Uniform spectral gap for $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$ with associated eigenvalues $\lambda_{j}^{(n)}$. Let $\mathcal{I} \subset(1 / 4, \infty)$ be a compact interval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound. Then we expect

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\left.\int_{Y_{n}} a_{n} đ \mathrm{Vol}\right|^{2}=0
$$

Framework for QE in the BS limit

$$
\Gamma_{n} \backslash G / K
$$

Suppose $Y_{n}=\Gamma_{n} \backslash \mathbb{H}$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S}$ \#H
(2) Uniform spectral gap for $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$
(0) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$ with associated eigenvalues $\lambda_{j}^{(n)}$. Let $\mathcal{I} \subset(1 / 4, \infty)$ be a compact interval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound. Then we expect

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \text { đVol }-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0 .
$$

Framework for QE in the BS limit

$\Gamma_{n} \backslash G / K$

Suppose $Y_{n}=\Gamma_{n} \backslash \mathbb{H}$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$

Unic \mathcal{C}
(2) Uniform spectral gap for $\triangle \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions of $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$ with associated eigenvalues $\lambda_{j}^{(n)}$. Let $\mathcal{I} \subset(1 / 4, \infty)$ be a compact interval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound. Then we expect

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \text { đVol }-\left.\int_{Y_{n}} a_{n} đ \vee o l\right|^{2}=0
$$

Framework for QE in the BS limit

$$
\Gamma_{n} \backslash G / K
$$

Suppose $Y_{n}=\Gamma_{n} \backslash$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$
(2) Uniform spectral gap for $\stackrel{\mathcal{C}}{\Delta} \curvearrowright L^{2}\left(Y_{n}\right)$
(0) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions of $\stackrel{\mathcal{C}}{\triangle} \curvearrowright L^{2}\left(Y_{n}\right)$ with associated eigenvalues $\lambda_{j}^{(n)}$. Let $\mathcal{I} \subset(1 / 4, \infty)$ be a compact interval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound. Then we expect

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \text { đVol }-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0 .
$$

Framework for QE in the BS limit

$$
\Gamma_{n} \backslash G / K
$$

Suppose $Y_{n}=\Gamma_{n}$ \#\# with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$
(2) Uniform spectral gap for $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$

- Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions of $\stackrel{\mathcal{C}}{\triangle} \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$
associated eigenvalues $\lambda_{j}^{(n)}$. Let $\mathcal{I} \subset(1 / 4, \infty)$ be a compact interval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound. Then we expect

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \text { đVol }-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0 .
$$

Framework for QE in the BS limit

$$
\Gamma_{n} \backslash G / K
$$

Suppose $Y_{n}=\Gamma_{n} \backslash \mathbb{\#}$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$
(2) Uniform spectral gap for $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$

- Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions of $\stackrel{\mathcal{C}}{\triangle} \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)} \quad \Theta \subset \Omega_{\text {temp }}^{+}$
associated eigenvalues $\lambda_{j}^{(n)}$. Let $\mathcal{I} \subset(1 / 4, \infty)$ be a compact interval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound. Then we expect

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \text { đVol }-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0 .
$$

Framework for QE in the BS limit

$$
\Gamma_{n} \backslash G / K
$$

Suppose $Y_{n}=\Gamma_{n} \backslash \mathbb{\#}$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$
(2) Uniform spectral gap for $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$
(0) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions of $\stackrel{\mathcal{C}}{\triangle} \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)} \quad \Theta \subset \Omega_{\text {temp }}^{+}$ nice subset associated eigenvalues $\lambda_{j}^{(n)}$. Let $\mathcal{I} \subset(1 / 4, \infty)$ be a compact interval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound. Then we expect

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \lambda_{j}^{(n)} \in \mathcal{I}\right\}} \sum_{j: \lambda_{j}^{(n)} \in \mathcal{I}}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \text { đVol }-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0 .
$$

Framework for QE in the BS limit

$$
\Gamma_{n} \backslash G / K
$$

Suppose $Y_{n}=\Gamma_{n} \backslash \mathbb{H i t h} \Gamma_{n}$ cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} \mathbb{H}$
(2) Uniform spectral gap for $\Delta \curvearrowright L^{2}\left(Y_{n}\right)$

- Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be ONB of eigenfunctions of $\stackrel{\mathcal{C}}{\Delta} \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)} \quad \Theta \subset \Omega_{\text {temp }}^{+}$ nice subset associated eigenvalues $\lambda_{j}^{(n)}$. Let $\mathcal{I} \subset(1 / 4, \infty)$ be a compact interval. Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound. Then we expect

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \nu_{j}^{(n)} \in \Theta\right\}} \sum_{j: \nu \nu_{j}^{(n)} \in \Theta}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \text { đVol }-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0 .
$$

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15-set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for regular graphs using wave propagator method
- Le Masson-Sahlsten '17- QE in the BS limit for hyperbolic surfaces using wave propagator method; incorporated an ergodic theorem of Nevo
- Abert-Bergeron-Le Masson '18-QE in the BS limit for rank one locally symmetric spaces; established joint framework for both QE in large eigenvalue limit and QE in the BS limit
- Brumley-Matz '22-QE in the BS limit for $\operatorname{SL}(d, \mathbb{R}) / S O(d)$; introduced polytopal ball averaging operators
- P. '23-QE in the BS limit for the Bruhat-Tits building associated to $\mathrm{PGL}(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the geometric bound

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15-set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16-reproved QE in the BS limit for regular graphs using wave propagator method
- Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces using wave propagator method; incorporated an ergodic theorem of Nevo
- Abert-Bergeron-Le Masson '18- QE in the BS limit for rank one locally symmetric spaces; established joint framework for both QE in large eigenvalue limit and QE in the BS limit
- Brumley-Matz '22-QE in the BS limit for SL(d, $\mathbb{R}) / S O(d)$; introduced polytopal ball averaging operators
 PGL(3,F) where F is a non-archimedean local field of arbitrary characteristic; new method for the geometric bound

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15-set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16-reproved QE in the BS limit for regular graphs using wave propagator method
- Le Masson-Sahlsten '17- QE in the BS limit for hyperbolic surfaces using wave propagator method; incorporated an ergodic theorem of Nevo
- Abert-Bergeron-Le Masson '18- QE in the BS limit for rank one locally symmetric spaces; established joint framework for both QE in large eigenvalue limit and QE in the BS limit introduced polytopal ball averaging operators
 $\operatorname{PGL}(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the geometric bound

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15-set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16-reproved QE in the BS limit for regular graphs using wave propagator method
- Le Masson-Sahlsten '17- QE in the BS limit for hyperbolic surfaces using wave propagator method; incorporated an ergodic theorem of Nevo
- Abert-Bergeron-Le Masson '18-QE in the BS limit for rank one locally symmetric spaces; established joint framework for both QE in large eigenvalue limit and QE in the BS limit
introduced polytopal ball averaging operators
- P. '23-QE in the BS limit for the Bruhat-Tits building associated to $\operatorname{PGL}(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the geometric bound

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15-set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16-reproved QE in the BS limit for regular graphs using wave propagator method
- Le Masson-Sahlsten '17- QE in the BS limit for hyperbolic surfaces using wave propagator method; incorporated an ergodic theorem of Nevo
- Abert-Bergeron-Le Masson '18-QE in the BS limit for rank one locally symmetric spaces; established joint framework for both QE in large eigenvalue limit and QE in the BS limit
- Brumley-Matz '22-QE in the BS limit for $\operatorname{SL}(d, \mathbb{R}) / \mathrm{SO}(d)$; introduced polytopal ball averaging operators
- P. '23 - QE in the BS limit for the Bruhat-Tits building associated to PGL(3,F) where F is a non-archimedean local field of arbitrary characteristic: new method for the geometric bound

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15-set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16-reproved QE in the BS limit for regular graphs using wave propagator method
- Le Masson-Sahlsten '17- QE in the BS limit for hyperbolic surfaces using wave propagator method; incorporated an ergodic theorem of Nevo
- Abert-Bergeron-Le Masson '18- QE in the BS limit for rank one locally symmetric spaces; established joint framework for both QE in large eigenvalue limit and QE in the BS limit
- Brumley-Matz '22-QE in the BS limit for $\operatorname{SL}(d, \mathbb{R}) / \mathrm{SO}(d)$; introduced polytopal ball averaging operators
- P. '23-QE in the BS limit for the Bruhat-Tits building associated to $\operatorname{PGL}(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the geometric bound

Bruhat-Tits buildings as natural next setting

rank one
higher rank

Bruhat-Tits buildings as natural next setting

rank one
higher rank

Bruhat-Tits buildings as natural next setting

rank one
higher rank

Bruhat-Tits buildings as natural next setting

rank one
higher rank

Bruhat-Tits buildings as natural next setting

rank one higher rank

archimedean hyperbolic surfaces	$\mathrm{SL}(d, \mathbb{R}) / \mathrm{SO}(d)$	
non-archimedean	regular graphs	$\mathrm{PGL}(3, F) / \operatorname{PGL}(3, \mathcal{O})$

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.
Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} cocompact, torsionfree lattices s.t.
 Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text { E }}$ Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions. Then

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers. Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} cocompact, torsionfree lattices s.t.
 Plancherel measure, and not meet a codimension one exceptional locus \equiv Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions. Then

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$

eigenfunctions. Then

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$.

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$. Let $\Theta \subset \Omega_{\text {temp }}^{+}$be compact, have positive Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text { E. }}$
eigenfunctions. Then

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$. Let $\Theta \subset \Omega_{\text {temp }}^{+}$be compact, have positive Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text {. }}$ Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions.

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$. Let $\Theta \subset \Omega_{\text {temp }}^{+}$be compact, have positive Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text { E. }}$ Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \nu_{j}^{(n)} \in \Theta\right\}} \sum_{j: \nu_{j}^{(n)} \in \Theta}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0
$$

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} mpact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$. Let $\Theta \subset \Omega_{\text {temp }}^{+}$be compact, have positive Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text { E. }}$ Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \nu_{j}^{(n)} \in \Theta\right\}} \sum_{j: \nu_{j}^{(n)} \in \Theta}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0
$$

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} mpact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K \operatorname{Vol}\left(Y_{n}\right) \rightarrow \infty$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$. Let $\Theta \subset \Omega_{\text {temp }}^{+}$be compact, have positive Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text { E. }}$ Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \nu_{j}^{(n)} \in \Theta\right\}} \sum_{j: \nu_{j}^{(n)} \in \Theta}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0
$$

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} ocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K \operatorname{Vol}\left(Y_{n}\right) \rightarrow \infty$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ follows from property (T)
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$. Let $\Theta \subset \Omega_{\text {temp }}^{+}$be compact, have positive Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text {. }}$ Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \nu_{j}^{(n)} \in \Theta\right\}} \sum_{j: \nu_{j}^{(n)} \in \Theta}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\left.\int_{Y_{n}} a_{n} đ \vee \mathrm{Vol}\right|^{2}=0
$$

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} mpact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K \operatorname{Vol}\left(Y_{n}\right) \rightarrow \infty$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ follows from property (T)
(3) Uniform disereteness follows from discreteness of building For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$. Let $\Theta \subset \Omega_{\text {temp }}^{+}$be compact, have positive Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text { E. }}$ Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \nu_{j}^{(n)} \in \Theta\right\}} \sum_{j: \nu_{j}^{(n)} \in \Theta}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\left.\int_{Y_{n}} a_{n} đ \mathrm{Vol}\right|^{2}=0
$$

Coloring eigenfunctions

- Sometimes $\Gamma \backslash G / K$ has a non-trivial coloring
- Coloring gives "trivial" coloring eigenfunctions

- Generalization of eigenfunction associated to $-(q+1)$ for regular bipartite graphs

Coloring eigenfunctions

- Sometimes $\Gamma \backslash G / K$ has a non-trivial coloring
- Coloring gives "trivial" coloring eigenfunctions

- Generalization of eigenfunction associated to $-(q+1)$ for regular bipartite graphs

Coloring eigenfunctions

- Sometimes $\Gamma \backslash G / K$ has a non-trivial coloring
- Coloring gives "trivial" coloring eigenfunctions

- Generalization of eigenfunction associated to $-(q+1)$ for regular bipartite graphs

The tempered spectrum and the exceptional locus

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15-set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16-reproved QE in the BS limit for regular graphs using wave propagator method
- Le Masson-Sahlsten '17- QE in the BS limit for hyperbolic surfaces using wave propagator method; incorporated an ergodic theorem of Nevo
- Abert-Bergeron-Le Masson '18- QE in the BS limit for rank one locally symmetric spaces; established joint framework for both QE in large eigenvalue limit and QE in the BS limit
- Brumley-Matz '22-QE in the BS limit for $\operatorname{SL}(d, \mathbb{R}) / \mathrm{SO}(d)$; introduced polytopal ball averaging operators
- P. '23-QE in the BS limit for the Bruhat-Tits building associated to $\operatorname{PGL}(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the geometric bound

Preceding literature on QE in the BS limit

- Anantharaman-Le Masson '15-set up the framework for QE in the BS limit and proved it for regular graphs
- Brooks-Le Masson-Lindenstrauss '16-reproved QE in the BS limit for regular graphs using wave propagator method
- Le Masson-Sahlsten '17- QE in the BS limit for hyperbolic surfaces using wave propagator method; incorporated an ergodic theorem of Nevo
- Abert-Bergeron-Le Masson '18- QE in the BS limit for rank one locally symmetric spaces; established joint framework for both QE in large eigenvalue limit and QE in the BS limit
- Brumley-Matz '22-QE in the BS limit for $\operatorname{SL}(d, \mathbb{R}) / \mathrm{SO}(d)$; introduced polytopal ball averaging operators
- P. '23-QE in the BS limit for the Bruhat-Tits building associated to $\mathrm{PGL}(3, F)$ where F is a non-archimedean local field of arbitrary characteristic; new method for the geometric bound

Wave propagator to geometric bound
wave propagator

(polytopal ball averaging operators)

geometric bound

(intersections of nolytopal balls)

Wave propagator to geometric bound

> wave propagator
> (polytopal ball averaging operators)

geometric bound
(intersections of polytopal balls)

Wave propagator to geometric bound

> wave propagator
> (polytopal ball averaging operators)

geometric bound

(intersections of polytopal balls)

Wave propagator to geometric bound

wave propagator
(polytopal ball averaging operators)

Weyl chamber parametrizes relative positions

Figure: Half geodesics (Weyl chambers) parametrize relative positions

Metric balls in the tree are polytopal balls

Figure: A polytope (line segment) in the Weyl chamber corresponds to a ball in the tree

Weyl chamber parametrizes relative positions
(

Weyl chamber parametrizes relative positions
(

Weyl chamber parametrizes relative positions

Polytopes in Weyl chamber define polytopal balls

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$. Let $\Theta \subset \Omega_{\text {temp }}^{+}$be compact, have positive Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text { E. }}$ Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \nu_{j}^{(n)} \in \Theta\right\}} \sum_{j: \nu_{j}^{(n)} \in \Theta}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\int_{Y_{n}} a_{n} \text { đVol }\left.\right|^{2}=0
$$

Main Theorem (P. '23)

Let $G=\operatorname{PGL}(3, F)$ and $K=\operatorname{PGL}(3, \mathcal{O})$, where F is a non-archimedean local field of arbitrary characteristic and \mathcal{O} is its ring of integers.

Suppose $Y_{n}=\Gamma_{n} \backslash G / K$ with Γ_{n} cocompact, torsionfree lattices s.t.
(1) Benjamini-Schramm convergence: $Y_{n} \xrightarrow{B S} G / K$
(2) Uniform spectral gap for $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$
(3) Uniform discreteness

For each Y_{n} let $\left\{\psi_{j}^{(n)}\right\}$ be an ONB of eigenfunctions of $H(G, K) \curvearrowright L^{2}\left(Y_{n}\right)$ with spectral parameters $\nu_{j}^{(n)}$. Let $\Theta \subset \Omega_{\text {temp }}^{+}$be compact, have positive Plancherel measure, and not meet a codimension one exceptional locus $\overline{\text { E. }}$ Let $a_{n} \in L^{\infty}\left(Y_{n}\right)$ with uniform L^{∞}-bound and orthogonal to coloring eigenfunctions. Then

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{\#\left\{j: \nu_{j}^{(n)} \in \Theta\right\}} \sum_{j: \nu_{j}^{(n)} \in \Theta}\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}-\left.\int_{Y_{n}} a_{n} đ \vee \mathrm{Vol}\right|^{2}=0
$$

Wave propagator to geometric bound

$$
\begin{aligned}
& A_{M}=\text { wave propagator } \\
& \left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \text { dVol }\left.\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2} \lesssim \sum_{\text {all } \psi_{j}^{(n)}}\left\|A_{M} \psi_{j}^{(n)}\right\|^{2}
\end{aligned}
$$

Wave propagator to geometric bound

$$
\begin{aligned}
& A_{M}=\text { wave propagator } \\
& \left.\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \mathrm{~d} \vee o l\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2}
\end{aligned}
$$

Wave propagator to geometric bound

- $A_{M}=$ wave propagator

$$
\begin{gathered}
U_{m} \approx \text { avg over polytopal ball } \\
\left.\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \mathrm{dVol}\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2}
\end{gathered}
$$

Wave propagator to geometric bound

- $A_{M}=$ wave propagator

$$
\left.\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \vee \mathrm{Vol}\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2} \lesssim \sum_{\text {all } \psi_{j}^{(n)}}\left\|A_{M} \psi_{j}^{(n)}\right\|^{2}
$$

Wave propagator to geometric bound

- $A_{M}=$ wave propagator

$$
\left.\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}^{2}\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2} \lesssim \sum_{\text {all } \psi_{j}^{(n)}}\left\|A_{M} \psi_{j}^{(n)}\right\|^{2}
$$

Analyze kernel function

$$
U_{m}^{*} \circ a_{n} \circ U_{m}
$$

integrate a_{n} over $P_{m}(x) \cap P_{m}(y)$
convolution op. assoc.

Wave propagator to geometric bound

- $A_{M}=$ wave propagator
- $U_{m} \approx$ avg over polytopal ball

$$
\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} \text { đVol }\left.\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2} \lesssim \sum_{\text {all } \psi_{j}^{(n)}}\left\|A_{M} \psi_{j}^{(n)}\right\|^{2}
$$

Analyze kernel function

$$
U_{m}^{*} \circ a_{n} \circ U_{m}
$$

integrate a_{n} over $P_{m}(x) \cap P_{m}(y)$

Wave propagator to geometric bound

- $A_{M}=$ wave propagator
- $U_{m} \approx$ avg over polytopal ball
- $P_{m}(x)=$ polytopal ball centered at x

$$
\left.\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \operatorname{Vol}\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2} \lesssim \sum_{\text {all } \psi_{j}^{(n)}}\left\|A_{M} \psi_{j}^{(n)}\right\|^{2}
$$

Analyze kernel function

$$
\begin{gathered}
U_{m}^{*} \circ a_{n} \circ U_{m} \\
\downarrow
\end{gathered}
$$

integrate a_{n} over $P_{m}(x) \cap P_{m}(y)$

Wave propagator to geometric bound

- $A_{M}=$ wave propagator
- $U_{m} \approx$ avg over polytopal ball
- $P_{m}(x)=$ polytopal ball centered at x

$$
\left.\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \operatorname{Vol}\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2} \lesssim \sum_{\text {all } \psi_{j}^{(n)}}\left\|A_{M} \psi_{j}^{(n)}\right\|^{2}
$$

Analyze kernel function

$$
\begin{gathered}
U_{m}^{*} \circ a_{n} \circ U_{m} \\
\downarrow
\end{gathered}
$$

integrate a_{n} over $P_{m}(x) \cap P_{m}(y)$
\downarrow
convolution op. assoc.

$$
\text { to } P_{m}(x) \cap P_{m}(y)
$$

Wave propagator to geometric bound

- $A_{M}=$ wave propagator
- $U_{m} \approx$ avg over polytopal ball
- $P_{m}(x)=$ polytopal ball centered at x

$$
\left.\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2} \lesssim \sum_{\text {all } \psi_{j}^{(n)}}\left\|A_{M} \psi_{j}^{(n)}\right\|^{2}
$$

Analyze kernel function

$$
\begin{gathered}
U_{m}^{*} \circ a_{n} \circ U_{m} \\
\downarrow
\end{gathered}
$$

integrate a_{n} over $P_{m}(x) \cap P_{m}(y)$
\downarrow
convolution op. assoc.

$$
\text { to } P_{m}(x) \cap P_{m}(y)
$$

Wave propagator to geometric bound

- $A_{M}=$ wave propagator
- $U_{m} \approx$ avg over polytopal ball
- $P_{m}(x)=$ polytopal ball centered at x

$$
\left.\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2} \lesssim \sum_{\text {all } \psi_{j}^{(n)}}\left\|A_{M} \psi_{j}^{(n)}\right\|^{2}
$$

Ergodic theorem of Nevo

$$
\begin{gathered}
\text { norm of } \\
\text { conv. op. } \\
\lesssim \frac{1}{\operatorname{Vol}\left(P_{m}(x) \cap P_{m}(y)\right)^{\delta}}
\end{gathered}
$$

integrate a_{n} over $P_{m}(x) \cap P_{m}(y)$ \downarrow
convolution op. assoc.

$$
\text { to } P_{m}(x) \cap P_{m}(y)
$$

Wave propagator to geometric bound

- $A_{M}=$ wave propagator
- $U_{m} \approx$ avg over polytopal ball
- $P_{m}(x)=$ polytopal ball centered at x

$$
\left.\left.\sum\left|\int_{Y_{n}} a_{n} \cdot\right| \psi_{j}^{(n)}\right|^{2} đ \mathrm{Vol}^{2}\right|^{2}=\sum\left|\left\langle\psi_{j}^{(n)}, a_{n} \cdot \psi_{j}^{(n)}\right\rangle\right|^{2} \lesssim \sum_{\text {all } \psi_{j}^{(n)}}\left\|A_{M} \psi_{j}^{(n)}\right\|^{2}
$$

Analyze kernel function

$$
\begin{gathered}
U_{m}^{*} \circ a_{n} \circ U_{m} \\
\downarrow
\end{gathered}
$$

integrate a_{n} over $P_{m}(x) \cap P_{m}(y)$ \downarrow

Ergodic theorem of Nevo

convolution op. assoc.

$$
\text { to } P_{m}(x) \cap P_{m}(y)
$$

My method for geometric bound applied to the regular tree

Figure: $P_{8}(x) \cap P_{8}(y)$ on 3-regular tree with $d(x, y)=6$

- Goal: compute volume of intersection (number of vertices)

My method for geometric bound applied to the regular tree

Figure: $P_{8}(x) \cap P_{8}(y)$ on 3-regular tree with $d(x, y)=6$

- Goal: compute volume of intersection (number of vertices)

My method (cont.): polytopal parametrization

Figure: w is confluence point: $\operatorname{geod}(x, w) \cap \operatorname{geod}(y, w)=\{w\}$

My method (cont.): polytopal parametrization

My method (cont.): polytopal parametrization

My method (cont.): Brion's formula

- z gets assigned coordinates (α, β) :

$\alpha=\#$ of steps along $\operatorname{geod}(x, y)$ to reach confluence point
 $\beta=\#$ of stens from confluence point to z

- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}$
- Brion's formula for exponential sum over lattice points in polytope:

My method (cont.): Brion's formula

- z gets assigned coordinates (α, β) :

$$
\alpha=\# \text { of steps along } \operatorname{geod}(x, y) \text { to reach confluence point }
$$

$\beta=\#$ of steps from confluence point to z

- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}$
- Brion's formula for exponential sum over lattice points in polytope:

My method (cont.): Brion's formula

- z gets assigned coordinates (α, β) :
$\alpha=\#$ of steps along $\operatorname{geod}(x, y)$ to reach confluence point $\beta=\#$ of steps from confluence point to z
- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}$
- Brion's formula for exponential sum over lattice points in polytope:

My method (cont.): Brion's formula

- z gets assigned coordinates (α, β) :
$\alpha=\#$ of steps along geod (x, y) to reach confluence point $\beta=\#$ of steps from confluence point to z
- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}$
- Brion's formula for exponential sum over lattice points in polytope:

My method (cont.): Brion's formula

- z gets assigned coordinates (α, β) :
$\alpha=\#$ of steps along $\operatorname{geod}(x, y)$ to reach confluence point $\beta=\#$ of steps from confluence point to z
- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}$
- Brion's formula for exponential sum over lattice points in polytope:

$$
\sum_{\lambda \in Q \cap \mathbb{Z}^{n}} q^{\langle f, \lambda\rangle}=\sum_{\text {vertices } v \text { of } Q} C_{v} q^{\langle f, v\rangle}
$$

(in this case $f=(0,1))$

My method (cont.): Brion's formula

- z gets assigned coordinates (α, β) :
$\alpha=\#$ of steps along $\operatorname{geod}(x, y)$ to reach confluence point $\beta=\#$ of steps from confluence point to z
- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}=q^{\langle(0,1),(\alpha, \beta)\rangle}$
- Brion's formula for exponential sum over lattice points in polytope:

$$
\begin{gathered}
\sum_{\lambda \in Q \cap \mathbb{Z}^{n}} q^{\langle f, \lambda\rangle}=\sum_{\text {vertices } v \text { of } Q} C_{v} q^{\langle f, v\rangle} \\
(\text { in this case } f=(0,1))
\end{gathered}
$$

My method (cont.): Brion's formula

- z gets assigned coordinates (α, β) :
$\alpha=\#$ of steps along $\operatorname{geod}(x, y)$ to reach confluence point $\beta=\#$ of steps from confluence point to z
- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}=q^{\langle(0,1),(\alpha, \beta)\rangle}$
- Brion's formula for exponential sum over lattice points in polytope:

$$
\begin{gathered}
\sum_{\lambda \in Q \cap \mathbb{Z}^{n}} q^{\langle f, \lambda\rangle}=\sum_{\text {vertices } v \text { of } Q} C_{v} q^{\langle f, v\rangle} \\
(\text { in this case } f=(0,1))
\end{gathered}
$$

- Dominating term comes from v which maximizes $q^{\langle f, v\rangle}$

My method (cont.): Brion's formula

- z gets assigned coordinates (α, β) :
$\alpha=\#$ of steps along $\operatorname{geod}(x, y)$ to reach confluence point $\beta=\#$ of steps from confluence point to z
- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}=q^{\langle(0,1),(\alpha, \beta)\rangle}$
- Brion's formula for exponential sum over lattice points in polytope:

$$
\begin{gathered}
\sum_{\lambda \in Q \cap \mathbb{Z}^{n}} q^{\langle f, \lambda\rangle}=\sum_{\text {vertices } v \text { of } Q} C_{v} q^{\langle f, v\rangle} \\
(\text { in this case } f=(0,1))
\end{gathered}
$$

- Dominating term comes from v which maximizes $q^{\langle f, v\rangle}$
- C_{v} are constants depending on f and the cone at vertex v

My method (cont.): polytopal parametrization

Figure: dominating term corresponds to extremal vertex of polytope

My method (cont.): confluence points

- z gets assigned coordinates (α, β) :
$\alpha=\#$ of steps along $\operatorname{geod}(x, y)$ to reach confluence point $\beta=\#$ of steps from confluence point to z
- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}=q^{\langle(0,1),(\alpha, \beta)\rangle}$
- Brion's formula for exponential sum over lattice points in polytope:

$$
\begin{gathered}
\sum_{\lambda \in Q \cap \mathbb{Z}^{n}} q^{\langle f, \lambda\rangle}=\sum_{\text {vertices } v \text { of } Q} C_{v} q^{\langle f, v\rangle} \\
(\text { in this case } f=(0,1))
\end{gathered}
$$

- Dominating term comes from v which maximizes $q^{\langle f, v\rangle}$
- C_{v} are constants depending on f and the cone at vertex v

My method (cont.): confluence points

- z gets assigned coordinates (α, β) :
$\alpha=\#$ of steps along $\operatorname{geod}(x, y)$ to reach confluence point $\beta=\#$ of steps from confluence point to z
- $\#\{z$ with coordinates $(\alpha, \beta)\} \approx q^{\beta}=q^{\langle(0,1),(\alpha, \beta)\rangle}$
- Brion's formula for exponential sum over lattice points in polytope:

$$
\begin{gathered}
\sum_{\lambda \in Q \cap \mathbb{Z}^{n}} q^{\langle f, \lambda\rangle}=\sum_{\text {vertices } v \text { of } Q} C_{v} q^{\langle f, v\rangle} \\
(\text { in this case } f=(0,1))
\end{gathered}
$$

- Dominating term comes from v which maximizes $q^{\langle f, v\rangle}$
- C_{v} are constants depending on f and the cone at vertex v

My method (cont.): confluence points for PGL(3,F)

Figure: Confluence points satisfy $\operatorname{para}(x, w) \cap \operatorname{para}(y, w)=\{w\}$

- To set up coordinatization for triples of points in the building, first need to classify confluence points.

My method (cont.): confluence points for $\operatorname{PGL}(3, F)$

Figure: Confluence points satisfy para $(x, w) \cap \operatorname{para}(y, w)=\{w\}$

- To set up coordinatization for triples of points in the building, first need to classify confluence points.

