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Geodesic flow on hyperbolic surface

@ Y compact hyperbolic surface
e ®, ~ T1Y geodesic flow

curvature < 0 = &, is ergodic

= generic geodesics equidistribute
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]
Quantum particles

dVol

@ Renormalize volume measure: dVol =
VolI(Y)

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 4/42



]
Quantum particles
dVol

VolI(Y)
o Quantum particle ~~ ¥ € L?(Y,dVol) with [[1]]2 = 1

@ Renormalize volume measure: dVol =

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 4/42



]
Quantum particles
dVol

VolI(Y)
o Quantum particle ~~ ¥ € L?(Y,dVol) with [[1]]2 = 1

@ Renormalize volume measure: dVol =

P(observing ¢ in E C Y) :/ ]2 dVol
E

:/ 1g - [1|? dVol
Y

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 4/42



]
Quantum particles
dVol

VolI(Y)
o Quantum particle ~~ ¥ € L?(Y,dVol) with [[1]]2 = 1

@ Renormalize volume measure: dVol =

P(observing ¢ in E C Y) :/ ]2 dVol
E
:/ 1g - [1|? dVol
Y

o If ¢ were equidistributed.

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 4/42



Quantum particles

@ Renormalize volume measure: dVol = _2Yol
VolI(Y)

o Quantum particle ~~ ¥ € L?(Y,dVol) with [[1]]2 = 1

P(observing ¢ in E C Y) :/ ]2 dVol
E

= / 1g - [1|? dVol
Y
o If ¢ were equidistributed.
. : _ Vol(E)
P(observing ¢ in E C Y) = Vol(Y)
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-
The Laplacian

e Eigendata of A:

O=X < A< <. eigenvalues of A

{v;} ONB of eigenfunctions of A
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-
The Laplacian

e Eigendata of A:

O=X < A< <. eigenvalues of A
{v;} ONB of eigenfunctions of A

e In QM, % has energy h2)\j. Let h; = %
J

fix hand let \; = 00 =~ fix energy and let h; — 0

@ As \j — oo, should “recover” ergodicity ~ 1); equidistributes

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023

5/42



Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de
Verdiere)

Let a e C>°(Y). Then

)\|I—>moo #1{/: )\J < )\} Z ‘/ || d@Vol — /Ya cTVoI‘2 =
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Quantum ergodicity theorem

Theorem (QE in the large eigenvalue limit; Snirelman, Zelditch, Colin de
Verdiere)

Let a e C>°(Y). Then

)\|I—>moo #1{/: )\J < )\} Z ‘/ || d@Vol — /Ya cTVoI‘2 =

@ Average over eigenfunctions with eigenvalue less than A

o Compare the measures [1);|2dVol and dVol weakly (integrate against
test function)

@ Interpretations:

@ Generic high energy quantum particles equidistribute.
© Generic bounded energy quantum particles equidistribute as h — 0.
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Visualization of quantum ergodicity

Figure: Image made by Alex Barnett
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-
QE in large eigenvalue limit vs. QE in the BS limit

e Eigenvalues of A lie in [0, 00)
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QE in large eigenvalue limit vs. QE in the BS limit

e Eigenvalues of A lie in [0, 00)

@ QE in the large eigenvalue limit:

fix the manifold & vary the spectral window

1

1 I

0 A — 00
@ QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold
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-
QE in large eigenvalue limit vs. QE in the BS limit

e Eigenvalues of A lie in [0, 00)

@ QE in the large eigenvalue limit:

fix the manifold & vary the spectral window

|
[ 1
0 A — 00

@ QE in the Benjamini-Schramm limit:

fix the spectral window & vary the manifold

: [ I
0 7 7
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Benjamini-Schramm convergence

(Yn) Benjamini-Schramm converges to H if, for

every R > 0,
! Vol({y € Yy : InjRady, (y) < R}) 0
R Vol(Yy) -
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Benjamini-Schramm convergence

(Yn) Benjamini-Schramm converges to H if, for
every R > 0,

' Vol({y € Y, : InjRady, (y) < R})
n|—>n;o VO|(Yn)

Interpretation: most points have arbitrarily large
injectivity radius
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Benjamini-Schramm convergence

(Yn) Benjamini-Schramm converges to H if, for
every R > 0,

' Vol({y € Y, : InjRady, (y) < R})
n|—>n;o VO|(Yn)

Interpretation: most points have arbitrarily large
injectivity radius

Spectrum of A on H is [£, 00).
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|
QE in the BS limit for hyperbolic surfaces

Theorem (Le Masson-Sahlsten '17)

Suppose (Y,) is a sequence of compact hyperbolic surfaces s.t.
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Real and p-adic (locally) symmetric spaces

rank one higher rank

archimedean hyperbolic surfaces

non-archimedean
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Real and p-adic (locally) symmetric spaces

rank one higher rank
archimedean hyperbolic surfaces symmetric spaces
non-archimedean regular graphs Bruhat-Tits buildings

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 11 /42



Quantization in higher rank

geod. flow ergodic

rank one  — (R-action)
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Quantization in higher rank

geod. flow ergodic

(R-action) - QE involves A

rank one —

geod. flow NOT ergodic

(BUT ergodic R¥-action) QE involves k operators

higher rank —
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Symmetric spaces

e G = semisimple Lie group over R (w/o compact factors)

G =SL(2,R)
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X = G/K with K a maximal compact subgroup

D(G, K) = G-invariant differential operators on X

G =SL(2,R)
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K = SO(2)

D(G, K) = algebra generated by A
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e D(G,K) = G-invariant differential operators on X

e Fact: D(G, K) generated by k operators

G =SL(2,R)
X=H
K = SO(2)

D(G, K) = algebra generated by A

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 13 /42



Symmetric spaces

G = semisimple Lie group over R (w/o compact factors)
X is associated Riemannian manifold called symmetric space

D(G, K) = G-invariant differential operators on X

o
o
e X = G/K with K a maximal compact subgroup
o
e Fact: D(G, K) generated by k operators

G =SL(2,R)
X=H
K = SO(2)

D(G, K) = algebra generated by A
Figure: A closely related to averaging
over spheres in H
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|
Bruhat-Tits buildings

e G = semisimple algebraic group over F (non-archimedean local field)
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e G = semisimple algebraic group over F (non-archimedean local field)
@ B is associated simplicial complex called Bruhat-Tits building
e B~ G/K with K a hyperspecial maximal compact subgroup

G = PGL(2,Q))

B = infinite (p + 1)-regular tree
G/K = vertices of B

K =PGL(2,Zp)
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G = semisimple algebraic group over F (non-archimedean local field)

B is associated simplicial complex called Bruhat-Tits building
B ~ G/K with K a hyperspecial maximal compact subgroup

H(G, K) ~ G-invariant geometric operators (spherical Hecke algebra)
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B = infinite (p + 1)-regular tree
G/K = vertices of B
K = PGL(2,Zp)
H(G,K) = alg. gen.'d by adj. op. A
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Bruhat-Tits buildings

e G = semisimple algebraic group over F (non-archimedean local field)
@ B is associated simplicial complex called Bruhat-Tits building

e B~ G/K with K a hyperspecial maximal compact subgroup

e H(G, K) ~ G-invariant geometric operators (spherical Hecke algebra)
e Fact: H(G, K) generated by k operators

G = PGL(2,Qp)
B = infinite (p + 1)-regular tree
G/K = vertices of B
K = PGL(2,Zp)
H(G, K) = alg. gen.'d by adj. op. A Figure: Adjacency operator A on tree

involves summing over sphere of radius 1
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Buildings are composed of branching apartments

s
o fs
s

Figure: An apartment in the tree is a bi-infinite geodesic.
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|
An apartment in the Bruhat-Tits building of PGL(3, F)
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Branching apartments
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|
H(G, K) generated by refinements of adjacency operator
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]
Quotients of X and B

e I < G cocompact, torsionfree lattice

MNG/Kis
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Quotients of X and B

e [ < G cocompact, torsionfree lattice

locally symmetric space (e.g. hyperbolic surface)

MNG/Kis {

finite simplicial complex (e.g. finite regular graph)
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]
Quotients of X and B

e [ < G cocompact, torsionfree lattice

locally symmetric space (e.g. hyperbolic surface)

MNG/Kis {

finite simplicial complex (e.g. finite regular graph)

SO

e G/K is universal cover
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Joint eigenfunctions and spectral parameters

@ Let C = either D(G, K) or H(G, K)
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Joint eigenfunctions and spectral parameters

o Let C = either D(G, K) or H(G, K)
@ C generated by k operators Az, ..., Ax
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Joint eigenfunctions and spectral parameters

o Let C = either D(G, K) or H(G, K)
@ C generated by k operators Az, ..., Ax

C~[2(MN\G/K) = @(ij (joint eigenfunctions)

J

vj = k-tuple of eigenvalues (spectral parameter)
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Tempered spectrum

irreps of C
(all 1-dim.)
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Tempered spectrum

irreps of C
{k-tuples} <> {(all l-dim.)}
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Tempered spectrum

irreps of C

{k-tuples} <> {(all 1-dim) with K-fixed vector

admissible irreps of G
} o
(spherical repns)

@ Tempered spectrum:

Q-i-

temp

= C A L2(G/K)

spectrum of {
universal cover

spherical repns
in L2(G)
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Tempered spectrum

irreps of C
{k-tuples} <> {(all l-dim.)} “

e Tempered spectrum:
spectrum of

C ~ L%(G/K)

universal cover

_l’_
Qtemp A

.........

Figure: Q,,, for A on His [1/4, 00)
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Tempered spectrum

rreps of C admissible irreps of G
{k-tuples} <> {(all ii)l-dim )} with K-fixed vector

(spherical repns)
e Tempered spectrum:

spectrum of

C L2(G/K) S o {spherical repns}

: in L2(G)
universal cover

_l’_
Qtemp A

.........

Figure: Qo for A on His [1/4,00)  Figure: Qem for A on (g + 1)-regular
tree is [-2,/q,2,/q]
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BS convergence implies Plancherel convergence

3 2 1 1 2 3

Figure: Distribution of eigenvalues for large random 3-regular graph

#{j: \" e 1)
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R
Framework for QE in the BS limit

Suppose Y, = I',\H with ', cocompact, torsionfree lattices s.t.

@ Benjamini-Schramm convergence: Y, B m
@ Uniform spectral gap for A ~ L2(Y,)
© Uniform discreteness
For each Y), let {w}")} be ONB of eigenfunctions of A ~ L?(Y,) with

associated eigenvalues Aj(-") . Let Z C (1/4,00) be a compact interval. Let
ap € L*°(Y},) with uniform L*°-bound. Then we expect

1
lim —M——— E / ap - |¢(")|2 dVol —/ ap dVol
n—o0 .y () J

#U:AT €1} jaMer Yo Yo

2
=0.
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@ Uniform spectral gap for A ~ L2(Y,)
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Framework for QE in the BS limit
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Suppose Y, = F5\H with ', cocompact, torsionfree lattices s.t.
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© Benjamini-Schramm convergence: Y, LN

C
© Uniform spectral gap for A ~ L2(Y,)

© Uniform discreteness

C
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R
Framework for QE in the BS limit

Fn\G/K
Suppose Y, = F5\H with ', cocompact, torsionfree lattices s.t.
G/K
@ Benjamini-Schramm convergence: Y, By

C
@ Uniform spectral gap for A ~ L2(Y,)

© Uniform discreteness

C
For each Y, let {w}")} be ONB of eigenfunctions of A ~ L2(Y,) with

n
spectral parameters v

associated elgenvamesﬁ\@ Let Z C (1/4,00) be a compact interval. Let
ap € L*°(Y,) with uniform L*°-bound. Then we expect

im — 3 /a,,-]z/z}n)|2 avOl—/ ap dVol
Yn n

n—o0 P )\(”) cT
#{J ey } j:)\J(.")EI
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Framework for QE in the BS limit
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Suppose Y, = F5\H with ', cocompact, torsionfree lattices s.t.
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@ Uniform spectral gap for A ~ L2(Y,)
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Framework for QE in the BS limit
Fn\G/K
Suppose Y, = F5\H with ', cocompact, torsionfree lattices s.t.
G/K
@ Benjamini-Schramm convergence: Y, By

C
@ Uniform spectral gap for A ~ L2(Y,)
© Uniform discreteness

C
For each Y, let {w )Y be ONB of eigenfunctions of A ~ L2(Y,) with

spectral parameters v;" +
P P J ©cC Qtemp nice subset

associated engenva#uesﬁ\ﬁ Let Z-c{(1/4;00) be a compact-interval. Let
ap € L*(Y,) with uniform L*-bound. Then we expect

2
im = 3 /an.w}”)\Z avOl—/ ap dVol
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]
Preceding literature on QE in the BS limit

@ Anantharaman-Le Masson '15 - set up the framework for QE in the
BS limit and proved it for regular graphs
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Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for
regular graphs using wave propagator method
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using wave propagator method; incorporated an ergodic theorem of
Nevo

Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one
locally symmetric spaces; established joint framework for both QE in
large eigenvalue limit and QE in the BS limit

Brumley-Matz '22 - QE in the BS limit for SL(d,R)/SO(d);
introduced polytopal ball averaging operators

P. '23 - QE in the BS limit for the Bruhat-Tits building associated to
PGL(3, F) where F is a non-archimedean local field of arbitrary
characteristic; new method for the geometric bound
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Bruhat-Tits buildings as natural next setting

rank one higher rank

archimedean

non-archimedean
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-
Bruhat-Tits buildings as natural next setting

rank one higher rank

archimedean hyperbolic surfaces SL(d,R)/SO(d)

non-archimedean regular graphs PGL(3, F)/PGL(3,0)
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|
Main Theorem (P. '23)

Let G = PGL(3, F) and K = PGL(3, O), where F is a non-archimedean
local field of arbitrary characteristic and O is its ring of integers.
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Main Theorem (P. '23)

Let G = PGL(3, F) and K = PGL(3, O), where F is a non-archimedean
local field of arbitrary characteristic and O is its ring of integers.

Suppose Y, = I,\G/K with ', eocompact, torsionfree lattices s.t.

o Bemamﬁéehﬁmm—emwefgeﬁee%%—% Vol(Y,) —
@ Uniform spectral gap for H(G, K) ~ L?(Y,)

© Uniform discreteness
For each Y, let {@ZJ(")} be an ONB of eigenfunctions of H(G, K) ~ L?(Y,)
(n

with spectral parameters v ) Let© C Qtemp be compact, have positive
Plancherel measure, and not meet a codimension one exceptional locus =.
Let a, € L>°(Y},) with uniform L*°-bound and orthogonal to coloring
eigenfunctions. Then

lim 1 Z

n—oo
#{J V E @} j:l/j(n)Ee

2
=0.

an - W)J(”)\z dVol — /Y ap dVol

n
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Let G = PGL(3, F) and K = PGL(3, O), where F is a non-archimedean
local field of arbitrary characteristic and O is its ring of integers.

Suppose Y, = I,\G/K with ', eocompact, torsionfree lattices s.t.

O Benjamini-Sel va BS K VO|( )

(2] Uﬁ#@%ﬁ%ﬁ&kg&p—f@{—#ﬁéé—@—%% follows from property (T
© Uniferm-disereteness follows from discreteness of building

For each Y, let {1/}1(" } be an ONB of eigenfunctions of H(G, K) ~ L?(Y,)

with spectral parameters I/J( " Let®C Qt*emp be compact, have positive
Plancherel measure, and not meet a codimension one exceptional locus =.

=0.

Let a, € L>(Y,) with uniform L*°-bound and orthogonal to coloring
o glj ™ € 0} )

eigenfunctions. Then
2
/ an - Wj(n)‘z dVol — / ap dVol
j Y/ o Yn n

lim g
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Coloring eigenfunctions

e Sometimes '\G/K has a non-trivial coloring AVAVA AVAVAVAN
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Coloring eigenfunctions

@ Sometimes '\G/K has a non-trivial coloring

@ Coloring gives “trivial” coloring eigenfunctions

o Generalization of eigenfunction associated to
—(g + 1) for regular bipartite graphs
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The tempered spectrum and the exceptional locus

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 28 /42



]
Preceding literature on QE in the BS limit

Anantharaman-Le Masson '15 - set up the framework for QE in the
BS limit and proved it for regular graphs

Brooks-Le Masson-Lindenstrauss '16 - reproved QE in the BS limit for
regular graphs using wave propagator method

Le Masson-Sahlsten '17 - QE in the BS limit for hyperbolic surfaces
using wave propagator method; incorporated an ergodic theorem of
Nevo

Abert-Bergeron-Le Masson '18 - QE in the BS limit for rank one
locally symmetric spaces; established joint framework for both QE in
large eigenvalue limit and QE in the BS limit

Brumley-Matz '22 - QE in the BS limit for SL(d,R)/SO(d);
introduced polytopal ball averaging operators

P. '23 - QE in the BS limit for the Bruhat-Tits building associated to
PGL(3, F) where F is a non-archimedean local field of arbitrary
characteristic; new method for the geometric bound
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Wave propagator to geometric bound

wave propagator
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Wave propagator to geometric bound
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(polytopal ball averaging operators)
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Wave propagator to geometric bound

wave propagator

(polytopal ball averaging operators)

(intersections of polytopal balls)
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Weyl chamber parametrizes relative positions
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Figure: Half geodesics (Weyl chambers) parametrize relative positions
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Metric balls in the tree are polytopal balls

Figure: A polytope (line segment) in the Weyl chamber corresponds to a ball in
the tree

[ ]
o
[ ]
[ ]

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 32/42



Weyl chamber parametrizes relative positions

\/ N/

K

/\ /\

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 33/42



Weyl chamber parametrizes relative positions

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 33/42



Weyl chamber parametrizes relative positions
\/ N/

%A

/\ /\

Carsten Peterson (Universitdt Paderborn QE on B-T buildings December 13, 2023 33/42



-
Polytopes in Weyl chamber define polytopal balls
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Main Theorem (P. '23)

Let G = PGL(3, F) and K = PGL(3, O), where F is a non-archimedean
local field of arbitrary characteristic and O is its ring of integers.

Suppose Y, = I,\G/K with I', cocompact, torsionfree lattices s.t.

© Benjamini-Schramm convergence: Y, B, G/K
@ Uniform spectral gap for H(G, K) ~ L2(Y,)
© Uniform discreteness
For each Y, let {@ZJ}")} be an ONB of eigenfunctions of H(G, K) ~ L?(Y,)

with spectral parameters VJ("). Let © C Qttmp be compact, have positive

Plancherel measure, and not meet a codimension one exceptional locus =.
Let a, € L*°(Y},) with uniform L*°-bound and orthogonal to coloring
eigenfunctions. Then

lim (1 Z

2
n— o0 . n) / an - ‘1,&;”)’2 dVol — / a, dVol
#{j: v € @}j_l/(,,)ee Ya Y
v
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Main Theorem (P. '23)

2
lim 1 '/ anp - (”)\ dVol — / a, dVol| =0.
” Y”

n—o00 #{J V(") c @}
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Wave propagator to geometric bound
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Wave propagator to geometric bound
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Wave propagator to geometric bound

@ Ap = wave propagator

Z ’ /Y dp - Wj(n)\z 6V0|‘2 = Z ‘(wj(”)7 a 77bj(n)>‘2
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Wave propagator to geometric bound

@ Ap = wave propagator
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Wave propagator to geometric bound

@ Ap = wave propagator
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all w}”)

’Analyze kernel function‘
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Wave propagator to geometric bound

@ Ap = wave propagator
e Up =~ avg over polytopal ball
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’Analyze kernel function‘

*
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Wave propagator to geometric bound

@ Ap = wave propagator
e U, =~ avg over polytopal ball
o P, (x) = polytopal ball centered at x

Z’/y an'\lﬂ}n)\z WO|‘2:Z‘<¢}n),an.w§n)>‘2S Z HAM¢J(n)H2

all w}”)

’Analyze kernel function‘

*
U, oanoUp

!
integrate a, over Pp,(x) N Pm(y)
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Wave propagator to geometric bound

@ Ap = wave propagator
e U, =~ avg over polytopal ball
o P, (x) = polytopal ball centered at x

Z’/y an'\lﬂ}n)\z WO|‘2:Z‘<¢}n),an.w§n)>‘2S Z "AM¢§n)"2

all w}”)

’Analyze kernel function‘

U, 0apoUn
1
integrate a, over Pp,(x) N Pm(y)
1
convolution op. assoc.

to Pm(x) N Pm(y)
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Wave propagator to geometric bound

@ Ap = wave propagator
e U, =~ avg over polytopal ball
o P, (x) = polytopal ball centered at x

Z’/y an'\lﬂ}n)\z WO|‘2:Z‘<¢}n),an.w§n)>‘2S Z HAM¢J(n)H2

all w}”)

’Analyze kernel function‘ ’ Ergodic theorem of Nevo‘

*
U, oanoUp

!
norm of 1
integrate a, over Pp(x) N Py(y) S 3
conv. op. = ol (P,(x) N P,
L (Pm(x) N Pm(y))

convolution op. assoc.

to Pm(x) N Pm(y)
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Wave propagator to

@ Ap = wave propagator
e U, =~ avg over polytopal ball
o P, (x) = polytopal ball centered at x

Z’/y an'WJ(n)\Z WO|‘2:Z‘<¢}n),an.w§n)>‘2S Z "AM¢§n)"2

all w}”)

’Analyze kernel function‘ ’Ergodic theorem of Nevo‘

*
Uy, oano Unp

1

: norm of _ 1

integrate a, over Pp(x) N Pm(y) conv. op. 5
1

convolution op. assoc.

to Pm(X) N Pm()/)
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My method for geometric bound applied to the regular tree

3 o33
o 3

Figure: Pg(x) N Pg(y) on 3-regular tree with d(x,y) =6
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My method for geometric bound applied to the regular tree

3 o33
o 3

Figure: Pg(x) N Pg(y) on 3-regular tree with d(x,y) =6

@ Goal: compute volume of intersection (number of vertices)
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My method (cont.): polytopal parametrization
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My method (cont.): polytopal parametrization

Figure: w is confluence point. geod(x, w) N geod(y, w) = {w}

X w y
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My method (cont.): polytopal parametrization
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My method (cont.): Brion's formula

@ z gets assigned coordinates («, 3):
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My method (cont.): Brion's formula

@ z gets assigned coordinates («, 3):

a = # of steps along geod(x, y) to reach confluence point
8 = # of steps from confluence point to z

o #{z with coordinates (o, 3)} ~ ¢”

@ Brion's formula for exponential sum over lattice points in polytope:

(FA) _ (Fv)
> q >  Gaq

AEQNZN vertices v of Q
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My method (cont.): Brion's formula

@ z gets assigned coordinates («, 3):

a = # of steps along geod(x, y) to reach confluence point
8 = # of steps from confluence point to z

o #{z with coordinates (a, 8)} ~ ¢° = q<(0’1)’(“’*3)>

@ Brion's formula for exponential sum over lattice points in polytope:

(FA) _ (Fv)
Y q >  Gaq

AEQNZN vertices v of Q

(in this case f = (0, 1))
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My method (cont.): Brion's formula

@ z gets assigned coordinates («, 3):
a = # of steps along geod(x, y) to reach confluence point

8 = # of steps from confluence point to z

o #{z with coordinates (o, 8)} ~ ¢° = q<(0’1)’(a’5)>

@ Brion's formula for exponential sum over lattice points in polytope:

(FA) _ (Fv)
Y q >  Gaq

AEQNZN vertices v of Q

(in this case f = (0, 1))

o Dominating term comes from v which maximizes g{/*)
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AEQNZN vertices v of Q

(in this case f = (0, 1))

o Dominating term comes from v which maximizes g{f-¥)
e C, are constants depending on f and the cone at vertex v
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My method (cont.): polytopal parametrization
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My method (cont.): polytopal parametrization

Figure: dominating term corresponds to extremal vertex of polytope
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My method (cont.): confluence points

@ z gets assigned coordinates («, 3):

a = # of steps along geod(x, y) to reach confluence point
8 = # of steps from confluence point to z

o #{z with coordinates (o, 8)} =~ ¢° = q<(0’1)’(a’5)>

@ Brion's formula for exponential sum over lattice points in polytope:

(FA) _ (Fv)
Y q >  Ga

AEQNZN vertices v of Q

(in this case f = (0, 1))

o Dominating term comes from v which maximizes g{f>¥)
e C, are constants depending on f and the cone at vertex v
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My method (cont.): confluence points for PGL(3, F)

w
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X

Figure: Confluence points satisfy para(x, w) N para(y, w) = {w}
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My method (cont.): confluence points for PGL(3, F)

X

Figure: Confluence points satisfy para(x, w) N para(y, w) = {w}

@ To set up coordinatization for triples of points in the building, first
need to classify confluence points.
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