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QE in the large eigenvalue limit on hyperbolic surfaces

Theorem (Zelditch ’87): Let Y be a compact hyperbolic surface, and let a ∈ C∞(Y ).
Let {ψj} be an ONB of ∆ on L2(Y ) with eigenvalues {λj}. Then

lim
λ→∞

1
#{j : λj ≤ λ}

∑
λj≤λ

∣∣∣∣ ∫
Y
a · |ψj|2 dVol −

1
Vol(Y )

∫
Y
a dVol

∣∣∣∣2 = 0.

0 λ → ∞
Fix the manifold and vary the spectral window

Interpretation: Generic high energy quantum particles on Y are equidistributed.
Motivation: The geodesic flow on Y is ergodic, so generic classical particles on Y
equidistribute.

QE in the Benjamini-Schramm limit on hyperbolic surfaces

Definition: A sequence of hyperbolic surfaces (Yn) Benjamini-Schramm con-
verges to H if asymptotically most points have arbitrarily large injectivity radii,
namely that for every R > 0:

lim
n→∞

Vol({y ∈ Yn : InjRadYn(y) < R})
Vol(Yn)

= 0.

Theorem (Le Masson-Sahlsten ’17): Let (Yn) be a sequence of compact hyperbolic
surfaces. Let {ψ(n)

j } be an ONB of eigenfunctions of ∆ with eigenvalues {λ(n)
j }. As-

sume (Yn) has a uniform spectral gap for ∆, has a universal lower bound on their
injectivity radii, and Benjamini-Schramm converges to H. Let I be a compact subin-
terval of (1

4,∞). Let an ∈ L∞(Yn) with a universal L∞-norm bound. Then

lim
n→∞

1
#{j : λ(n)

j ∈ I}

∑
λ

(n)
j ∈I

∣∣∣∣ ∫
Y
an · |ψ(n)

j |2 dVol − 1
Vol(Yn)

∫
Yn
an dVol

∣∣∣∣2 = 0.

0 1
4 I

Fix the spectral window and vary the manifold

Interpretation: Tempered eigenfunctions on large hyperbolic surfaces are equidis-
tributed on average.
Motivation: The spectrum of ∆ on H is purely absolutely continuous (equal to the
interval [14,∞)) which is a form of spectral delocalization. If Yn is “close” to H, its
eigenfunctions with eigenvalue in [14,∞) should also exhibit delocalization.

Symmetric spaces

G = semisimple Lie group without compact factors
X = Riemannian manifold called symmetric space
K = maximal compact subgroup/stabilizer of pt in X
D(G,K) = algebra of G-inv. differential ops on X
Ω = spectrum of D(G,K) acting on L2(X)
D(G,K) is commutative and freely generated by
rank(G) operators

G = SL(2,R)
X = H
K = SO(2,R)
D(G,K) = algebra
generated by ∆
Ω = [14,∞)

rank one higher rank

archimedean hyperbolic surfaces symmetric spaces

non-archimedean regular graphs Bruhat-Tits buildings

Real and p-adic (locally) symmetric spaces BS convergence implies spectral convergence to
Plancherel measure

Bruhat-Tits buildings

G = s.s. alg. group over non-archimedean local field F
B = simplicial complex called Bruhat-Tits building
K ≈ maximal compact subgroup/stabilizer of a vertex
in B
H(G,K) ≈ algebra of G-inv. ops on vertices of B
Ω = spectrum of H(G,K) acting on L2(G/K)
H(G,K) is commutative and freely generated by
rank(G) operators

G = PGL(2,Qp)
B = infinite (p + 1)-regular
tree
K = PGL(2,Zp)
G/K = vertices of the tree
H(G,K) = algebra
generated by adjacency op.
Ω = [−2√

p, 2√
p]

Joint eigenfunctions and spectral parameters on quotients ofG/K

Suppose Γ < G is a cocompact, torsionfree lattice. Then,

Γ\G/K =

locally symmetric space (e.g. hyperbolic surface)

finite simplicial complex (e.g. finite regular graph),

with universal cover equal to G/K.
Let C be either D(G,K) or H(G,K). Then C is generated by k commuting normal
operators A1, . . . , Ak. Thus L2(Γ\G/K) has an ONB of joint eigenfunctions:

C y L2(Γ\G/K) =
⊕
j

Cψj.

By recording the eigenvalue of ψj for each Ak as a k-tuple, we obtain the spectral
parameter νj.
In the non-archimedean case, sometimes Γ preserves a non-trivial coloring with r
colors, in which case we obtain r coloring eigenfunctions. For example, in the
rank one case Γ\G/K may be a (q+ 1)-regular bipartite graph in which case we have
±(q + 1) as eigenvalues. The eigenfunction associated to −(q + 1) is a non-trivial
coloring eigenfunction.

Main result

Theorem (P. ’23) Let G = PGL(3, F ) and K = PGL(3,O), where F is a non-
archimedean local field of characteristic zero, and O is its ring of integers. Let
Γn < G be a sequence of torsionfree lattices, and let Yn = Γn\G/K. Suppose
card(Yn) → ∞. Let Θ ⊂ Ω be a compact subset with positive Plancherel measure
and not meeting a certain codimension one sublocus Ξ. Let {ψ(n)

j } be an ONB
of eigenfunctions of H(G,K) acting on L2(Yn). Let an ∈ L∞(Yn) with universal
L∞-norm bound and orthogonal to all non-trivial coloring eigenfunctions. Then

lim
n→∞

1
#{j : ν(n)

j ∈ Θ}

∑
ψ

(n)
j :ν(n)

j ∈Θ

∣∣∣∣ ∑
v∈Yn

an(v) · |ψ(n)
j (v)|2 − 1

card(Yn)
∑
v∈Yn

an(v)
∣∣∣∣2 = 0.

Geometry of Bruhat-Tits buildings

Apartments in the tree are bi-infinite geodesics An apartment in the building for PGL(3, F )

Some remarks about the proof

Anantharaman-Le Masson ’15 introduced QE in the BS limit (for regular graphs).
Their proof involved “microlocal analysis on regular trees”. Brooks-Le
Masson-Lindenstrauss ’16 found a new proof using “wave propagation” on
regular graphs.
The wave propagator roughly corresponds to averaging over “balls” of different
radii. It has been adapted for hyperbolic surfaces by Le Masson-Sahlsten ’17, rank
one locally symmetric spaces by Abert-Bergeron-Le Masson ’18, and locally
symmetric spaces associated to SL(d,R) by Brumley-Matz ’21.
In rank one metric balls suffice; in higher rank one must use “polytopal balls”.
The wave propagator has desirable spectral properties, ultimately allowing one to
reduce to bounding the norm of the kernel function of the wave propagator.
BS convergence allows one to lift to analyzing the kernel function on the universal
cover G/K.
After changing variables, one may bound the norm of the kernel function using an
ergodic theorem from Nevo ’98, which bounds the op. norm of convolution ops
associated to ergodic actions of semisimple algebraic groups over local fields.
An input to the Nevo ergodic theorem is the volume of the set defining the
convolution. One is thus led to bounding the volume of the intersection of
“polytopal balls” in the building (the “geometric bound”). This is the hardest step
and requires first classifying certain configurations in the building.
We repeatedly use Brion’s formula, which expresses the sum of an exponential
function over lattice points in a polytope in terms of the geometry of the polytope.

Method for the geometric bound illustrated on the tree

x y

Intersection of B(x, 8) and B(y, 8) in the 3-regular tree with d(x, y) = 6

x y

Points in the intersection may be “classified”
using lattice points in a polytope

Geometry of Bruhat-Tits buildings

A different kind of highlighted block.

∫ ∞

−∞
e−x2

dx =
√
π

Interdum et malesuada fames {1, 4, 9, . . .} ac ante ipsum primis in faucibus. Cras
eleifend dolor eu nulla suscipit suscipit. Sed lobortis non felis id vulputate.

A heading inside a block

Praesent consectetur mi x2 +y2 metus, nec vestibulum justo viverra nec. Proin eget
nulla pretium, egestas magna aliquam, mollis neque. Vivamus dictum uᵀv sagittis
odio, vel porta erat congue sed. Maecenas ut dolor quis arcu auctor porttitor.

Another heading inside a block

Sed augue erat, scelerisque a purus ultricies, placerat porttitor neque. Donec P (y |
x) fermentum consectetur ∇xP (y | x) sapien sagittis egestas. Duis eget leo euismod
nunc viverra imperdiet nec id justo.

Nullam vel erat at velit convallis laoreet

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hi-
menaeos. Phasellus libero enim, gravida sed erat sit amet, scelerisque congue diam.
Fusce dapibus dui ut augue pulvinar iaculis.

First column Second column Third column Fourth
Foo 13.37 384,394 α
Bar 2.17 1,392 β
Baz 3.14 83,742 δ
Qux 7.59 974 γ

A table caption*.

Donec quis posuere ligula. Nunc feugiat elit a mi malesuada consequat. Sed imperdiet
augue ac nibh aliquet tristique. Aenean eu tortor vulputate, eleifend lorem in, dictum
urna. Proin auctor ante in augue tincidunt tempor. Proin pellentesque vulputate
odio, ac gravida nulla posuere efficitur. Aenean at velit vel dolor blandit molestie.
Mauris laoreet commodo quam, non luctus nibh ullamcorper in. Class aptent taciti
sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.
Nulla varius finibus volutpat. Mauris molestie lorem tincidunt, iaculis libero at,
gravida ante. Phasellus at felis eu neque suscipit suscipit. Integer ullamcorper, dui
nec pretium ornare, urna dolor consequat libero, in feugiat elit lorem euismod lacus.
Pellentesque sit amet dolor mollis, auctor urna non, tempus sem.
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