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One-dimensional warm-up

If ξ < 0: ˆ ∞

0
eξxdx = −1

ξ
.

This extends to a meromorphic function with a pole at ξ = 0.
We have ˆ 3

0
eξxdx = −1

ξ
+

e3ξ

ξ

“ = ”
ˆ ∞

0
eξxdx +

ˆ 3

−∞
eξxdx .

0 3
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One-dimensional warm-up, cont.

If ξ < 0:
∞∑
j=0

eξj =
1

1− eξ
.

This extends to a meromorphic function with poles at 2πiZ.
We have (geometric series formula)

3∑
j=0

eξj =
1

1− eξ
+

e3ξ

1− e−ξ

“ = ”
∞∑
j=0

eξj +
3∑

j=−∞
eξj

0 3
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Exponential integral over a cone

Given simplicial cone k ⊂ V ≃ Rn with conical basis v1, . . . , vn and
ξ ∈ Int(k◦) we have absolute convergence:ˆ

k
e⟨ξ,x⟩dx = vol(□(v1, . . . , vn))

∏
j

1
−⟨ξ, vj⟩

.

v1

v2

This extends to a meromorphic function on V ∗
C with singularities on

⟨ξ, vj⟩ = 0.
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Exponential sum over a cone

Given rational simplicial cone k with primitive conical basis v1, . . . , vn
and ξ ∈ Int(k◦) we have absolute convergence:∑

k∩Zn

e⟨ξ,λ⟩ =
( ∑

λ∈□(v1,...,vn)∩Zn

e⟨ξ,λ⟩
)∏

j

1
1− e⟨ξ,vj ⟩

.

v1

v2

This extends to a meromorphic function with singularities on
⟨ξ, vj⟩ = 2πik for some k ∈ Z, i.e. e⟨ξ,·⟩ = 1 on Zn ∩ Rvj .
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Exponential sum/integral over polyhedra

Given a polyhedron q not containing a line, define

I (q; ξ) :=

ˆ
q
e⟨ξ,x⟩dx

and extend meromorphically from the locus where it converges
absolutely.

Given a lattice Λ and a rational polyhedron q not containing a line,
define

SΛ(q; ξ) :=
∑

λ∈q∩Λ
e⟨ξ,λ⟩

and extend meromorphically from the locus where it converges
absolutely.
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Tangent cones

Each face f of a polytope p has a tangent cone spf .

These cones are NOT pointed unless f is a vertex.
I (spv; ξ) is singular when ⟨ξ, ·⟩ is constant on an edge e containing v.
SΛ(s

p
v; ξ) is singular when e⟨ξ,·⟩ = 1 on Λ ∩ lin(e) for some edge e

containing v.
lin(f) is the linear subspace parallel to f.
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Brion’s formula

Theorem (Brion, ‘88)

Suppose p ⊂ V is a polytope. Then we have the following equality of
meromorphic functions in ξ ∈ V ∗

C:

I (p; ξ) =
∑

v∈Vert(p)

I (spv; ξ).

Theorem (Brion, ‘88)

Suppose p ⊂ V is a rational polytope with respect to a lattice Λ. Then we
have the following equality of meromorphic functions in ξ ∈ V ∗

C:

SΛ(p; ξ) =
∑

v∈Vert(p)

SΛ(s
p
v; ξ).
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Proofs of Brion’s formula

Brion’s original proof ’88: Riemann-Roch theorem on toric varieties

Barvinok ‘92: simpler proof using (among other things) Stokes’
theorem

We can give a slick proof using two black boxes.
1 The Brianchon-Gram formula.
2 The extension of I and SΛ to valuations.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 9 / 31



Proofs of Brion’s formula

Brion’s original proof ’88: Riemann-Roch theorem on toric varieties

Barvinok ‘92: simpler proof using (among other things) Stokes’
theorem

We can give a slick proof using two black boxes.
1 The Brianchon-Gram formula.
2 The extension of I and SΛ to valuations.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 9 / 31



Proofs of Brion’s formula

Brion’s original proof ’88: Riemann-Roch theorem on toric varieties

Barvinok ‘92: simpler proof using (among other things) Stokes’
theorem

We can give a slick proof using two black boxes.

1 The Brianchon-Gram formula.
2 The extension of I and SΛ to valuations.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 9 / 31



Proofs of Brion’s formula

Brion’s original proof ’88: Riemann-Roch theorem on toric varieties

Barvinok ‘92: simpler proof using (among other things) Stokes’
theorem

We can give a slick proof using two black boxes.
1 The Brianchon-Gram formula.

2 The extension of I and SΛ to valuations.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 9 / 31



Proofs of Brion’s formula

Brion’s original proof ’88: Riemann-Roch theorem on toric varieties

Barvinok ‘92: simpler proof using (among other things) Stokes’
theorem

We can give a slick proof using two black boxes.
1 The Brianchon-Gram formula.
2 The extension of I and SΛ to valuations.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 9 / 31



Virtual polyhedra and valuations

We can represent a polyhedron q by its indicator function [q].

The vector space generated by such [q] is called the space of virtual
polyhedra.

A linear map on this vector space is called a valuation.
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The Brianchon-Gram formula

Theorem (Brianchon-Gram formula)

Suppose p is a polytope. Then

[p] =
∑

f∈Faces(p)

(−1)dim(f)[spf ].

Every term on the RHS is a polyhedron containing a line except for the
tangent cones of the vertices.
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Extensions of I and SΛ to valuations

Theorem (Lawrence, Brion ‘91)

Define I (q; ξ) = 0 if q contains a line. Then [q] 7→ I (q; ξ) defines a
valuation.

Define SΛ(q; ξ) = 0 if q is rational and contains a line. Then [q] 7→ SΛ(q; ξ)
defines a valuation (on rational polyhedra).

Applying I and SΛ to Brianchon-Gram formula:

I (p; ξ) =
∑
f

(−1)dim(f)I (spf ; ξ) =
∑
v

I (spv; ξ).

SΛ(p; ξ) =
∑
f

(−1)dim(f)SΛ(s
p
f ; ξ) =

∑
v

SΛ(s
p
v; ξ).
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Why do we need a “degenerate” Brion’s formula?

I (p; ξ) =
∑
v

I (spv; ξ)

The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?
Singularities occur when ⟨ξ, ·⟩ is constant on some positive
dimensional face.
If ξ is “generic” we can compute the LHS by plugging into the RHS,
but if ξ is “degenerate” we get things like ∞−∞.
Given a degenerate ξ, we want a formula like Brion’s formula such
that

1 Each term only depends on some local geometry of p.
2 Each term is actually holomorphic at ξ, i.e. we can actually “plug

in” at ξ.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 13 / 31



Why do we need a “degenerate” Brion’s formula?

I (p; ξ) =
∑
v

I (spv; ξ)

The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?

Singularities occur when ⟨ξ, ·⟩ is constant on some positive
dimensional face.
If ξ is “generic” we can compute the LHS by plugging into the RHS,
but if ξ is “degenerate” we get things like ∞−∞.
Given a degenerate ξ, we want a formula like Brion’s formula such
that

1 Each term only depends on some local geometry of p.
2 Each term is actually holomorphic at ξ, i.e. we can actually “plug

in” at ξ.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 13 / 31



Why do we need a “degenerate” Brion’s formula?

I (p; ξ) =
∑
v

I (spv; ξ)

The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?
Singularities occur when ⟨ξ, ·⟩ is constant on some positive
dimensional face.

If ξ is “generic” we can compute the LHS by plugging into the RHS,
but if ξ is “degenerate” we get things like ∞−∞.
Given a degenerate ξ, we want a formula like Brion’s formula such
that

1 Each term only depends on some local geometry of p.
2 Each term is actually holomorphic at ξ, i.e. we can actually “plug

in” at ξ.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 13 / 31



Why do we need a “degenerate” Brion’s formula?

I (p; ξ) =
∑
v

I (spv; ξ)

The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?
Singularities occur when ⟨ξ, ·⟩ is constant on some positive
dimensional face.
If ξ is “generic” we can compute the LHS by plugging into the RHS,
but if ξ is “degenerate” we get things like ∞−∞.

Given a degenerate ξ, we want a formula like Brion’s formula such
that

1 Each term only depends on some local geometry of p.
2 Each term is actually holomorphic at ξ, i.e. we can actually “plug

in” at ξ.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 13 / 31



Why do we need a “degenerate” Brion’s formula?

I (p; ξ) =
∑
v

I (spv; ξ)

The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?
Singularities occur when ⟨ξ, ·⟩ is constant on some positive
dimensional face.
If ξ is “generic” we can compute the LHS by plugging into the RHS,
but if ξ is “degenerate” we get things like ∞−∞.
Given a degenerate ξ, we want a formula like Brion’s formula such
that

1 Each term only depends on some local geometry of p.
2 Each term is actually holomorphic at ξ, i.e. we can actually “plug

in” at ξ.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 13 / 31



Why do we need a “degenerate” Brion’s formula?

I (p; ξ) =
∑
v

I (spv; ξ)

The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?
Singularities occur when ⟨ξ, ·⟩ is constant on some positive
dimensional face.
If ξ is “generic” we can compute the LHS by plugging into the RHS,
but if ξ is “degenerate” we get things like ∞−∞.
Given a degenerate ξ, we want a formula like Brion’s formula such
that

1 Each term only depends on some local geometry of p.

2 Each term is actually holomorphic at ξ, i.e. we can actually “plug
in” at ξ.

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 13 / 31



Why do we need a “degenerate” Brion’s formula?

I (p; ξ) =
∑
v

I (spv; ξ)

The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?
Singularities occur when ⟨ξ, ·⟩ is constant on some positive
dimensional face.
If ξ is “generic” we can compute the LHS by plugging into the RHS,
but if ξ is “degenerate” we get things like ∞−∞.
Given a degenerate ξ, we want a formula like Brion’s formula such
that

1 Each term only depends on some local geometry of p.
2 Each term is actually holomorphic at ξ, i.e. we can actually “plug

in” at ξ.
Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 13 / 31



Gathering intuition about the degenerate setting

Heuristic: the singularities should cancel each other out in a way
that gives information about the volume of the faces on which ⟨ξ, ·⟩
is constant.

If ξ = 0, then I (p; ξ) = vol(p) and SΛ(p; ξ) = #{p ∩ Λ}.
If p = p1 × p2, and ⟨ξ, ·⟩ is constant on p1 and no face of p2, then

I (p; ξ) = vol(p1) · I (p2; ξ|p2).

ξ

If Λ = Λ1 ⊕ Λ2 in a compatible way, and pi are lattice polytopes, then

SΛ(p; ξ) = #{p1 ∩ Λ1} · SΛ2(p2; ξ|p2).
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Transverse cones

From now on we assume we have an inner product ⟨·, ·⟩ on V .

The transverse cone of a face f in p is

tpf := Projlin(f)⊥(s
p
f ).

Figure: Image from Berline-Vergne ’07

tpf is a pointed cone in lin(f)⊥.
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The main player: the alternating Levi cone

Given ξ ∈ V ∗
C, let {p}ξ denote the set of faces on which ⟨ξ, ·⟩ is

constant.

Given f ∈ {p}ξ we define the alternating Levi cone:

LCp
f (ξ) :=

∑
f⊂h1⊂···⊂hℓ∈mFlpf (ξ)

(−1)ℓ th1
f × th2

h1
× · · · × thℓhℓ−1

× tphℓ ,

where mFlpf (ξ) is all flags of faces in {p}ξ starting from f.

LCp
f (ξ) is a virtual cone in lin(f)⊥.

Why “Levi”? For SL(V ):

parabolic subgroups←→ flags of subspaces

Levi component←→ decomposition of V into sub-
spaces compatible with the flag
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A few examples

LCp
f (ξ) :=

∑
f⊂h1⊂···⊂hℓ∈mFlpf (ξ)

(−1)ℓ th1
f × th2

h1
× · · · × thℓhℓ−1

× tphℓ

If ξ is generic then {p}ξ is just the vertices, and LCp
v(ξ) = spv.

If f is ξ-maximal, then LCp
f (ξ) = tpf .

If ξ = 0, then

1 If f = p, then LCp
p(ξ) = {0} in 0-dimensional space.

2 If f ̸= p, then LCp
f (ξ) = ∅.
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A more complicated example

v

e

ξ

LCp
v(ξ) = tpv − tev × tpe

−− =

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 18 / 31



A more complicated example

v

e

ξ

LCp
v(ξ) = tpv − tev × tpe

−− =

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 18 / 31



A more complicated example

v

e

ξ

LCp
v(ξ) = tpv − tev × tpe

−− =

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 18 / 31



A more complicated example

v

e

ξ

LCp
v(ξ) = tpv − tev × tpe

−

− =

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 18 / 31



A more complicated example

v

e

ξ

LCp
v(ξ) = tpv − tev × tpe

−− =

Carsten Peterson (IMJ-PRG) Degenerate Brion’s formula March 4, 2025 18 / 31



Generalized Brianchon-Gram theorem

ff := Projlin(f)(f)

Theorem (P. ’24)

For any ξ ∈ V ∗
C, we have

p ≡
∑

f∈{p}ξ

ff × LCp
f (ξ)

modulo virtual polyhedra containing lines.

≡ − − +
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Degenerate Brion’s formula: continuous version

p ≡
∑

f∈{p}ξ

ff × LCp
f (ξ)

Theorem (P. ’24)

The function I (LCp
f (ξ);α) with α ∈ (lin(f)⊥)∗C is holomorphic at α = ξ.

I (q1 × q2; ξ) = I (q1; ξ|lin(q1)) · I (q2; ξ|lin(q2))

Corollary (P. ’24)

We have

I (p; ξ) =
∑

f∈{p}ξ

vol(f) · I (LCp
f (ξ); ξ),

and each term on the RHS is well-defined (non-singular).
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The discrete setting?

Corollary (P. ’24)

Suppose p is a rational polytope. Then for any ξ ∈ V ∗
C we have the

following equality of meromorphic functions in α:

SΛ(p;α) =
∑

f∈{p}ξ

SΛ(f
f × LCp

f (ξ);α).

Three related issues:
1 Can we split up SΛ(f

f × LCp
f (ξ);α) into something resembling

SΛ(f;α) · SΛ(LCp
f (ξ);α)?

2 If ξ ∈ 2πiΛ∗ \ 0, then e⟨ξ,·⟩ = 1 = e⟨0,·⟩ on Λ, but {p}ξ ̸= {p}0. Thus
{p}ξ is not the right set to study.

3 Is SΛ(f
f × LCp

f (ξ);α) holomorphic at α = ξ?
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Splitting up SΛ of a product

From now on we assume our inner product is rational.

Suppose V = W1 ⊕W2 with W1,W2 orthogonal rational subspaces.

Λi = Λ ∩Wi Λi = ProjWi
(Λ)

We have

Λ1/Λ1
∼←−
ϕ1

Λ/(Λ1 ⊕ Λ2)
∼−→
ϕ2

Λ2/Λ2.

W1

W2

W1

W2
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Splitting up SΛ of a product, cont.

Λi = Λ ∩Wi Λi = ProjWi
(Λ)

Λ1/Λ1
∼←−
ϕ1

Λ/(Λ1 ⊕ Λ2)
∼−→
ϕ2

Λ2/Λ2.

Proposition (P. ’24)

If qi ⊂Wi are polyhedra and ξ = ξ1 + ξ2 then

SΛ(q1 × q2; ξ) =
∑

[γ]∈Λ/(Λ1⊕Λ2)

Sϕ1([γ])+Λ1(q1; ξ1) · Sϕ2([γ])+Λ2(q2; ξ2).
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The replacement for {p}ξ and the locus (V ∗C)
Λ

Given ξ ∈ V ∗
C, let Ṽ be the subspace spanned by sublattice on which

e⟨ξ,λ⟩ = 1.

Define

ξ̃ =

{
0 on Ṽ

ξ on Ṽ⊥

1 ξ̃ ∈ (V ∗
C)

Λ := {α : if e⟨α,λ⟩ = 1 for some λ ∈ Λ, then ⟨α, λ⟩ = 0}.
2 e⟨ξ,·⟩ = e⟨ξ̃,·⟩ on f.i. sublattice Λ̃ ≤ Λ.
3 {p}ξ,Λ := {p}ξ̃ = {f : e

⟨ξ,·⟩ = 1 on f.i. sublattice of lin(f) ∩ Λ}

4 SΛ(p; ξ) =
∑

[γ]∈Λ/Λ̃
e⟨ξ,γ

Ṽ ⟩S[γ]+Λ̃(p; ξ̃)

Upshot: we should use {p}ξ,Λ and we can reduce to the case that
ξ ∈ (V ∗

C)
Λ.
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C)

Λ := {α : if e⟨α,λ⟩ = 1 for some λ ∈ Λ, then ⟨α, λ⟩ = 0}.

2 e⟨ξ,·⟩ = e⟨ξ̃,·⟩ on f.i. sublattice Λ̃ ≤ Λ.
3 {p}ξ,Λ := {p}ξ̃ = {f : e

⟨ξ,·⟩ = 1 on f.i. sublattice of lin(f) ∩ Λ}

4 SΛ(p; ξ) =
∑

[γ]∈Λ/Λ̃
e⟨ξ,γ

Ṽ ⟩S[γ]+Λ̃(p; ξ̃)

Upshot: we should use {p}ξ,Λ and we can reduce to the case that
ξ ∈ (V ∗

C)
Λ.
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1 ξ̃ ∈ (V ∗
C)

Λ := {α : if e⟨α,λ⟩ = 1 for some λ ∈ Λ, then ⟨α, λ⟩ = 0}.
2 e⟨ξ,·⟩ = e⟨ξ̃,·⟩ on f.i. sublattice Λ̃ ≤ Λ.
3 {p}ξ,Λ := {p}ξ̃ = {f : e

⟨ξ,·⟩ = 1 on f.i. sublattice of lin(f) ∩ Λ}

4 SΛ(p; ξ) =
∑

[γ]∈Λ/Λ̃
e⟨ξ,γ
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Holomorphicity

Theorem (P. ’24)

Suppose f ∈ {p}ξ,Λ. Then SΛ(LCp
f (ξ̃);α) is holomorphic at α = ξ.

The proof uses the local Euler-Maclaurin formula of Berline-Vergne
’07.
Euler-Maclaurin formulas provide exact relations between I (q; ξ) and
SΛ(q; ξ).
Deeply connected to the Riemann-Roch theorem on toric varieties
(Pukhlikov-Khovanskii ’92).

Bernoulli numbers −→ generating function
x

1− e−x
−→ Todd operators
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Degenerate Brion’s formula, discrete setting

Given a face f, define

Λf := Λ ∩ lin(f) Λf⊥ := Λ ∩ lin(f)⊥.

Given a set A, let

Af := Projlin(f)(A) Af⊥ := Projlin(f)⊥(A).
Recall:

p ≡
∑

f∈{p}ξ,Λ

ff × LCp
f (ξ̃)

Theorem (P. ’24)

Suppose p is a rational polytope with respect to Λ. Then

SΛ(p; ξ) =
∑

f∈{p}ξ,Λ

∑
[γ]∈Λ/(Λf⊕Λ

f⊥ )

#{ff ∩
(
[γf] + Λf

)
} · S

[γf⊥ ]+Λ
f⊥
(LCp

f (ξ̃); ξ),

and each term on the RHS is well-defined (non-singular).
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The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne ’07 construct a family of functions µΓ
W , indexed by rational

inner product spaces, mapping rational cones in W to meromorphic
functions on W ∗

C satisfying the following remarkable properties:

1 For any rational polyhedron q ⊂W :

SΓ(q; ξ) =
∑

f∈Face(q)

µΓf
⊥

f⊥ (tqf ; ξ) · I
Γf(f; ξ).

2 µΓ
W is invariant under shifting by Γ.

3 µΓ
W is a valuation on rational cones with any fixed vertex, and it sends

cones containing lines to zero.
4 For any rational cone µΓ

W (k; ξ) is holomorphic at 0.

Proposition (P. ’24)

The function µΓ
W (k; ξ) is holomorphic at every point in (V ∗

C)
Γ.
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Degenerate Brion’s formula, discrete setting version 2

Theorem (P. ’24)

Suppose p is a rational polytope. Then

SΛ(p; ξ) =∑
g∈{p}ξ,Λ

volΛg(g)
( ∑

g⊆f∈{p}ξ,Λ

( ∑
[γ]∈Λ/(Λf⊕Λ

f⊥ )

µ
([γf]+Λf)

g⊥

lin(f)∩lin(g)⊥(tfg; 0) · S[γf⊥ ]+Λ
f⊥

(LCp
f (ξ̃); ξ)

))
.

and each term on the RHS is well-defined.
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Exponential integrals over families of polytopes

Brion’s formula tells us that if ξ is generic then

I (t · p; ξ) =
∑

v∈Vert(p)

I (t · v+ 0spv; ξ) =
∑

v∈Vert(p)

I (0spv; ξ) · et⟨ξ,v⟩.

If ξ = 0, then clearly

I (t · p; ξ) = vol(p) · tdim(p).

Degenerate Brion’s formula tells us

I (t · p; ξ) =
∑

f∈{p}ξ

vol(f) · I (0LCp
f (ξ); ξ) · t

dim(f) · et⟨ξ,f⟩.
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Exponential sums over families of polytopes

Brion’s formula tells us that if ξ is generic and p is lattice polytope
then (t ∈ N)

SΛ(t · p; ξ) =
∑

v∈Vert(p)

SΛ(
0spv; ξ) · et⟨ξ,v⟩.

If ξ = 0, then

SΛ(t · p; ξ) = Ehrhart quasi-polynomial.

Degenerate Brion’s formula tells us

SΛ(t · p; ξ) =
explicit sum of terms of the form
quasi-polynomial × exponential
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A view towards applications

Exponential integrals over polyhedra show up in analysis on symmetric
spaces.

Exponential sums over lattice points in polyhedra show up in analysis
on Bruhat-Tits buildings.
Degenerate Brion’s formula plays the role of Laplace’s
method/stationary phase.
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