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One-dimensional warm-up, cont.

o If¢<O:
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One-dimensional warm-up, cont.

o If¢<O:

o0
Z 1—65

Jj=0

@ This extends to a meromorphic function with poles at 27/Z.
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One-dimensional warm-up, cont.

o If¢<O:
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@ This extends to a meromorphic function with poles at 27/Z.
@ We have (geometric series formula)
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Exponential integral over a cone

o Given simplicial cone ¥ C V ~ R" with conical basis v, ..., v, and
¢ € Int(€°) we have absolute convergence:

(€:x) Ix = v Vi,...,V, ;
/Ee d ol(O(vy, .. ., ”))IZI_@’ Vi)

V2

Vi
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Exponential integral over a cone

o Given simplicial cone ¥ C V ~ R" with conical basis v, ..., v, and
¢ € Int(€°) we have absolute convergence:

(€:x) Ix = v Vi,...,V, ;
/Ee d ol(O(vy, .. ., ”))IZI_@’ Vi)

V2
Vi

@ This extends to a meromorphic function on V¢ with singularities on
(& v) =0
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Exponential sum over a cone

@ Given rational simplicial cone ¢ with primitive conical basis vi, ..., v,
and ¢ € Int(¢°) we have absolute convergence:

1
S X N

enzn Ae0(va,...,va)NZ"
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Exponential sum over a cone

@ Given rational simplicial cone ¢ with primitive conical basis vi, ..., v,
and ¢ € Int(¢°) we have absolute convergence:

1
S X N

enzn Ae0(va,...,va)NZ"

@ This extends to a meromorphic function with singularities on
(€, v;) = 2mik for some k € Z, i.e. e/&) =1 on Z" NRy;.
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Exponential sum/integral over polyhedra

@ Given a polyhedron g not containing a line, define
I(g;€) ::/e<5’x>dx
q

and extend meromorphically from the locus where it converges
absolutely.
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Exponential sum/integral over polyhedra

@ Given a polyhedron g not containing a line, define
I(g;€) ::/e<5’x>dx
q

and extend meromorphically from the locus where it converges
absolutely.

e Given a lattice A and a rational polyhedron g not containing a line,
define

Sa(g: €)= Y eV

A€EqNA

and extend meromorphically from the locus where it converges
absolutely.
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Tangent cones

@ Each face f of a polytope p has a tangent cone 5’;
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Tangent cones

@ Each face f of a polytope p has a tangent cone 5?.

@ These cones are NOT pointed unless § is a vertex.
o I(sh; &) is singular when (£, ) is constant on an edge ¢ containing v.
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Tangent cones

@ Each face f of a polytope p has a tangent cone 5?.

@ These cones are NOT pointed unless § is a vertex.

o /(sh; €) is singular when (£, ) is constant on an edge ¢ containing v.

o Sp(sh; €) is singular when &) =1 on AN lin(e) for some edge ¢
containing v.
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Tangent cones

@ Each face f of a polytope p has a tangent cone 5?.

@ These cones are NOT pointed unless § is a vertex.
o I(sh; &) is singular when (£, ) is constant on an edge ¢ containing v.

o Sp(sh; €) is singular when €& = 1 on AN lin(e) for some edge ¢
containing v.

o lin(f) is the linear subspace parallel to §.
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Brion's formula

Theorem (Brion, ‘88)

Suppose p C V is a polytope. Then we have the following equality of
meromorphic functions in £ € V&

&)= D 1(sh:9)

veVert(p)
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Brion's formula

Theorem (Brion, ‘88)

Suppose p C V is a polytope. Then we have the following equality of
meromorphic functions in £ € V&

&)= D 1(sh:9)

veVert(p)

Theorem (Brion, ‘88)

Suppose p C V is a rational polytope with respect to a lattice A. Then we
have the following equality of meromorphic functions in £ € V{:

SAp €)= D Sa(shi€).

veVert(p)
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Proofs of Brion's formula

@ Brion's original proof '88: Riemann-Roch theorem on toric varieties
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Proofs of Brion's formula

@ Brion's original proof '88: Riemann-Roch theorem on toric varieties

@ Barvinok ‘92: simpler proof using (among other things) Stokes'
theorem

@ We can give a slick proof using two black boxes.

@ The Brianchon-Gram formula.
@ The extension of | and S, to valuations.
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Virtual polyhedra and valuations

@ We can represent a polyhedron q by its indicator function [q].
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Virtual polyhedra and valuations

@ We can represent a polyhedron q by its indicator function [q].

@ The vector space generated by such [q] is called the space of virtual
polyhedra.

@ A linear map on this vector space is called a valuation.
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The Brianchon-Gram formula

Theorem (Brianchon-Gram formula)

Suppose p is a polytope. Then
b= > (-1)"™0[sh].

fEFaces(p)
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The Brianchon-Gram formula

Theorem (Brianchon-Gram formula)

Suppose p is a polytope. Then

pl= > (D)0,

fEFaces(p)

Every term on the RHS is a polyhedron containing a line except for the
tangent cones of the vertices.
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Extensions of /| and Sj to valuations

Theorem (Lawrence, Brion ‘91)

Define I(q; &) = 0 if q contains a line. Then [q] — /(q; &) defines a
valuation.

Define Sa(q; ) = 0 if q is rational and contains a line. Then [q] — Sa(q; &)
defines a valuation (on rational polyhedra).
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Extensions of /| and Sj to valuations

Theorem (Lawrence, Brion ‘91)

Define /(q; &) = 0 if q contains a line. Then [q] — /(g; ) defines a
valuation.

Define Sa(q; ) = 0 if q is rational and contains a line. Then [q] — Sa(q; &)
defines a valuation (on rational polyhedra).

Applying I and Sp to Brianchon-Gram formula:

_ Z(_l)dim(f)[(g;J; g) = Z I(EE; f)
f v

Z( 1) Sa(s Z Sn(s6: €
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Why do we need a “degenerate” Brion's formula?

I(p:§) =D I(sh: €)
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Why do we need a “degenerate” Brion's formula?
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@ The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?

Carsten Peterson (IMJ-PRG) Degenerate Brion's formula March 4, 2025 13/31



Why do we need a “degenerate” Brion's formula?

I(p:§) =D I(sh: €)

@ The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?

@ Singularities occur when (¢, -) is constant on some positive
dimensional face.

Carsten Peterson (IMJ-PRG) Degenerate Brion's formula March 4, 2025 13/31



Why do we need a “degenerate” Brion's formula?

I(p:§) =D I(sh: €)

@ The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?

@ Singularities occur when (¢, -) is constant on some positive
dimensional face.

e If £ is "generic” we can compute the LHS by plugging into the RHS,
but if £ is “degenerate” we get things like co — co.
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Why do we need a “degenerate” Brion's formula?

I(p:§) =D I(sh: €)

@ The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?

@ Singularities occur when (¢, -) is constant on some positive
dimensional face.

e If £ is "generic” we can compute the LHS by plugging into the RHS,
but if £ is “degenerate” we get things like co — co.

o Given a degenerate &, we want a formula like Brion's formula such
that

© Each term only depends on some local geometry of p.
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Why do we need a “degenerate” Brion's formula?

I(p:§) =D I(sh: €)

@ The LHS is an entire function, but each term on the RHS is merely
meromorphic. How do the singularities cancel out?

@ Singularities occur when (¢, -) is constant on some positive
dimensional face.

e If £ is "generic” we can compute the LHS by plugging into the RHS,
but if £ is “degenerate” we get things like oo — oc.

o Given a degenerate &, we want a formula like Brion's formula such
that

© Each term only depends on some local geometry of p.
© Each term is actually holomorphic at &, i.e. we can actually “plug
in” at .

Carsten Peterson (IMJ-PRG) Degenerate Brion's formula March 4, 2025 13/31



|
Gathering intuition about the degenerate setting

Heuristic: the singularities should cancel each other out in a way

that gives information about the volume of the faces on which (¢, )
is constant.
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|
Gathering intuition about the degenerate setting

Heuristic: the singularities should cancel each other out in a way

that gives information about the volume of the faces on which (¢, )
is constant.

e If £ =0, then I(p; &) = vol(p) and Sa(p; &) = #{p NA}.
o If p=p1 X p2, and (&, ) is constant on p; and no face of p, then

I(p; §) = vol(p1) - 1(p2; &lpy)-

E
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|
Gathering intuition about the degenerate setting

Heuristic: the singularities should cancel each other out in a way
that gives information about the volume of the faces on which (¢, )
is constant.

e If £ =0, then I(p; &) = vol(p) and Sa(p; &) = #{p NA}.
o If p=p1 X p2, and (&, ) is constant on p; and no face of p, then

I(p; §) = vol(p1) - 1(p2; &lpy)-

T

@ If A= A1 ® Ay in a compatible way, and p; are lattice polytopes, then
SA(p;€) = #{p1 N A1} Sn, (p2i €lpa)-
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Transverse cones

@ From now on we assume we have an inner product (-,-) on V.
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Transverse cones

@ From now on we assume we have an inner product (-,-) on V.

@ The transverse cone of a face f in p is

t:f := Projjin() - (5';).

Figure: Image from Berline-Vergne '07
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Transverse cones

@ From now on we assume we have an inner product (-,-) on V.

@ The transverse cone of a face f in p is

t:f := Projjin() - (5';).

Figure: Image from Berline-Vergne '07

o tf is a pointed cone in lin(f)".
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The main player: the alternating Levi cone

e Given & € Vi, let {p}¢ denote the set of faces on which (¢, -) is
constant.
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The main player: the alternating Levi cone

e Given & € Vi, let {p}¢ denote the set of faces on which (¢, -) is
constant.

e Given f € {p}¢ we define the alternating Levi cone:

p — 2 (b1 b2 be p
LCE(¢) = > ()" X2 gt X
fCh1C--CheemFI? (€)

where mFI?(é) is all flags of faces in {p}¢ starting from f.
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LG} (E) = E (Z1)7 67 x b2 X x Xy
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where mFI?(é) is all flags of faces in {p}¢ starting from f.

° LC?(E) is a virtual cone in lin(f)*.
e Why “Levi"? For SL(V):
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The main player: the alternating Levi cone

e Given & € Vi, let {p}¢ denote the set of faces on which (¢, -) is
constant.

e Given f € {p}¢ we define the alternating Levi cone:

p — £ (b1 b2 be p
LG} (E) = E (Z1)7 67 x b2 X x Xy
fCh1C--CheemFI? (€)

where mFI?(é) is all flags of faces in {p}¢ starting from f.

° LC?(E) is a virtual cone in lin(f)*.
e Why “Levi"? For SL(V):

parabolic subgroups <— flags of subspaces
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The main player: the alternating Levi cone

e Given & € Vi, let {p}¢ denote the set of faces on which (¢, -) is
constant.

e Given f € {p}¢ we define the alternating Levi cone:

p — £ (b1 b2 be p
LG} (E) = E (Z1)7 67 x b2 X x Xy
fCh1C--CheemFI? (€)

where mFI?(é) is all flags of faces in {p}¢ starting from f.
° LC?(E) is a virtual cone in lin(f)*.

e Why “Levi"? For SL(V):

parabolic subgroups <— flags of subspaces

decomposition of V into sub-

Levi component +— . .
P spaces compatible with the flag
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A few examples

LCE(¢) = > (—1)" £ x 2 x

fCh1C--Chee€mFIF (€)
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A few examples

P — 2 (b1 b2 be p
LCE(¢) = > ()" x g2 > x
fCh1C--CheemFI} (€)

o If ¢ is generic then {p}¢ is just the vertices, and LC}(¢) = sb.
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A few examples

LCE(¢) = > (-1)* t?l x tgj X e X tgﬁ

x
-1 be
fCh1C--Chee€mFIF (€)

o If ¢ is generic then {p}¢ is just the vertices, and LC}(¢) = sb.

o If fis &-maximal, then LCY(€) = .
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A few examples

LCE(¢) = > (-1)* t?l x tgj X e X tgﬁ

x
-1 be
fCh1C--Chee€mFIF (€)

o If ¢ is generic then {p}¢ is just the vertices, and LC}(¢) = sb.

o If fis &-maximal, then LCY(€) = .
e If £ =0, then
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A few examples

LCE(¢) = > (D) A g2 x g x 8
fCh1C-CheemFIF (€)
o If ¢ is generic then {p}¢ is just the vertices, and LC}(¢) = sb.
o If fis &-maximal, then LCY(€) = .
e If £ =0, then
@ If f = p, then LC} (&) = {0} in 0-dimensional space.
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A few examples

LCE(¢) = > (D) A g2 x g x 8
fCh1C--Chee€mFIF (€)
o If ¢ is generic then {p}¢ is just the vertices, and LC}(¢) = sb.
o If fis &-maximal, then LCY(€) = .
e If £ =0, then
@ If f = p, then LC} (&) = {0} in 0-dimensional space.
Q If f# p, then LCF(€) = 0.
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A more complicated example
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A more complicated example

Carsten Peterson (IMJ-PRG) Degenerate Brion's formula March 4, 2025 18 /31



Generalized Brianchon-Gram theorem

i := Projjin( (f)
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Generalized Brianchon-Gram theorem

i := Projjin( (f)

Theorem (P. '24)

For any £ € V&, we have

p= > fixLC(E)
fe{n}e

modulo virtual polyhedra containing lines.
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Degenerate Brion's formula: continuous version

p= > I xLC(©)

fe{p}e
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Degenerate Brion's formula: continuous version

p= > I xLC(©)

fe{p}e

Theorem (P. '24)

The function I(LC?(g); @) with a € (lin(f)1)z is holomorphic at a = ¢.
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Degenerate Brion's formula: continuous version

p= > I xLC(©)

fe{p}e

Theorem (P. '24)

The function I(LC?(g); @) with a € (lin(f)1)z is holomorphic at a = ¢.

(a1 x q2:&) = 1(a1; Eliin(ay)) - 1(92: Eliin(az))

Carsten Peterson (IMJ-PRG) Degenerate Brion's formula March 4, 2025 20 /31



Degenerate Brion's formula: continuous version

p= > I xLC(©)

fe{p}e

Theorem (P. '24)

The function I(LCp(f) @) with a € (lin(f)1)z is holomorphic at a = ¢.

(a1 x q2:&) = 1(a1; Eliin(ay)) - 1(92: Eliin(az))

Corollary (P. '24)
We have

I(p:§) = > vol(f) - I(LCF(€); €),
fe{p}e

and each term on the RHS is well-defined (non-singular).

”
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-
The discrete setting?

Corollary (P. '24)

Suppose p is a rational polytope. Then for any £ € V& we have the
following equality of meromorphic functions in a:

Sa(pia) = D Sa(F x LG} (€); ).
fe{p}e
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Three related issues:
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The discrete setting?

Corollary (P. '24)

Suppose p is a rational polytope. Then for any £ € V& we have the
following equality of meromorphic functions in a:

Sa(pia) = D Sa(7 x LCE(&); ).
fe{pte

Three related issues:
@ Can we split up Sp(f' x LC?(f);a) into something resembling
Sa(fi ) - SA(LCF (€): )?
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The discrete setting?

Corollary (P. '24)

Suppose p is a rational polytope. Then for any £ € V& we have the
following equality of meromorphic functions in «:

Sa(pia) = D Sa(7 x LCE(&); ).
fe{pte

Three related issues:
@ Can we split up Sp(f' x LC’f’(f);a) into something resembling
Sa(fi ) - SA(LCF (€): )?
@ If £ € 2miN*\ 0, then el&) =1 = e(®) on A, but {p}¢ # {p}o. Thus
{p}¢ is not the right set to study.

Carsten Peterson (IMJ-PRG) Degenerate Brion's formula March 4, 2025 21/31



|
The discrete setting?

Corollary (P. '24)

Suppose p is a rational polytope. Then for any £ € V& we have the
following equality of meromorphic functions in «:

Sa(pia) = D Sa(7 x LCE(&); ).
fe{pte

Three related issues:
@ Can we split up Sp(f' x LC’f’(f);a) into something resembling
Sa(fi ) - SA(LCF (€): )?
Q If £ € 2miN*\ 0, then &) =1 =¢{% on A, but {p}e # {r}o. Thus
{p}¢ is not the right set to study.
Q Is Sp(ff x LC?(f);a) holomorphic at o = £7
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|
Splitting up Sp of a product

@ From now on we assume our inner product is rational.

Carsten Peterson (IMJ-PRG) Degenerate Brion's formula March 4, 2025 22/31



|
Splitting up Sp of a product

@ From now on we assume our inner product is rational.
@ Suppose V = W & W, with Wy, W, orthogonal rational subspaces.

N=NANW, N = Projy, (A)
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Splitting up Sp of a product

@ From now on we assume our inner product is rational.
@ Suppose V = W & W, with Wy, W, orthogonal rational subspaces.

N=NANW, N = Projy, (A)

o We have
AN\ <¢l A/ (A @ A,) ¢L> A2/N;.
1 2
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Splitting up Sp of a product, cont.

AN=NANW, N = Projy, (A)

A/ <¢i A/ (AL & Ay) ¢i> N2 /N,
1 2
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|
Splitting up Sp of a product, cont.

A =ANW: N = Projy, (A)

A/ <¢i A/ (AL & Ay) ¢i> N2 /N,
1 2

Proposition (P. '24)

If q; C W; are polyhedra and £ = & + & then

SAar ¥ a28) = D Seu(ran(a1:6) - Spp(rina(d2: €2).
[VIEN/(M1BA2)
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|
The replacement for {p}¢ and the locus (V)"

Given £ € V{, let V be the subspace spanned by sublattice on which
€A =1
e =1
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The replacement for {p}¢ and the locus (V)"

Given £ € V{, let V be the subspace spanned by sublattice on which

el&AN) = 1. Define
5_ 0on V
B & on v+
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The replacement for {p}¢ and the locus (V)"

Given £ € V{, let V be the subspace spanned by sublattice on which
eléN) = 1. Define
£ 0on V
B & on v+

O £ (V) i={a: if el®N =1 for some A € A, then (a,)\) = 0}.
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The replacement for {p}¢ and the locus (V)"

Given £ € V{, let V be the subspace spanned by sublattice on which
eléN) = 1. Define
£ 0on V
B & on v+

O £ (V) i={a: if el®N =1 for some A € A, then (a,)\) = 0}.
@ el&) = &) on f.i. sublattice A < A.
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The replacement for {p}¢ and the locus (V)"

Given £ € V{, let V be the subspace spanned by sublattice on which
eléN) = 1. Define
£ 0on V
B & on v+

O £ (V) i={a: if el®N =1 for some A € A, then (a,)\) = 0}.
Q@ &) =elé) on fi. sublattlce A <A
Q {plen :={p}s={J: el&) =1 on f.i. sublattice of lin(f) N A}
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The replacement for {p}¢ and the locus (V)"

Given £ € V{, let V be the subspace spanned by sublattice on which
eléN) = 1. Define
£ 0on V
B & on v+

O £ (V) i={a: if el®N =1 for some A € A, then (a,)\) = 0}.
Q@ &) =elé) on fi. sublattlce A <A
Q {plen :={p}s={J: el&) =1 on f.i. sublattice of lin(f) N A}

Q Sa(pé)= X e“””%m(mf)

[vlen/A
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|
The replacement for {p}¢ and the locus (V)"

Given £ € V{, let V be the subspace spanned by sublattice on which
eléN) = 1. Define
£ 0on V
B & on v+

O £ (V) i={a: if el®N =1 for some A € A, then (a,)\) = 0}.
Q@ &) =elé) on fi. sublattlce A <A.

Q {plen :={p}s={J: el&) =1 on f.i. sublattice of lin(f) N A}

QO S\pi&)= X e<§’”V>5[w]+A(P?5)

[Men/A
Upshot: we should use {p}s A and we can reduce to the case that

*\A
§e (Vo)
Carsten Peterson (IMJ-PRG) Degenerate Brion's formula March 4, 2025 24 /31



-
Holomorphicity

Theorem (P. '24)

Suppose f € {p}¢ . Then S/\(LC‘f’(E); «) is holomorphic at a = £.
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Holomorphicity

Theorem (P. '24)

Suppose f € {p}¢ . Then S/\(LC‘f’(E); «) is holomorphic at a = £.

@ The proof uses the local Euler-Maclaurin formula of Berline-Vergne
'07.
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Holomorphicity

Theorem (P. '24)

Suppose f € {p}¢ . Then S/\(LC‘f’(g); «) is holomorphic at a = £.

@ The proof uses the local Euler-Maclaurin formula of Berline-Vergne
'07.

@ Euler-Maclaurin formulas provide exact relations between /(q; £) and

Sa(a; 6).
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Holomorphicity

Theorem (P. '24)

Suppose f € {p}¢ . Then S/\(LC‘f’(g); «) is holomorphic at a = £.

@ The proof uses the local Euler-Maclaurin formula of Berline-Vergne
'07.

@ Euler-Maclaurin formulas provide exact relations between /(q; £) and
Sn(a: §).

@ Deeply connected to the Riemann-Roch theorem on toric varieties
(Pukhlikov-Khovanskii '92).
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-
Holomorphicity

Theorem (P. '24)

Suppose f € {p}¢ . Then S/\(LC‘f’(g); «) is holomorphic at a = £.

@ The proof uses the local Euler-Maclaurin formula of Berline-Vergne
'07.

@ Euler-Maclaurin formulas provide exact relations between /(q; £) and
Sn(a: §).

@ Deeply connected to the Riemann-Roch theorem on toric varieties
(Pukhlikov-Khovanskii '92).

Bernoulli numbers — generating function

— Todd operators

1—e X
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Degenerate Brion's formula, discrete setting

o Given a face f, define

A; == AN lin(f) A = ANlin(f)h.
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Degenerate Brion's formula, discrete setting

o Given a face f, define
A; == AN lin(f) A = ANlin(f)h.
o Given a set A, let

AT = Projiin()(A) A" = Proji - (A).
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Degenerate Brion's formula, discrete setting

o Given a face f, define
A; == AN lin(f) A = ANlin(f)h.
o Given a set A, let
Al = Projin s (A) AT = Projjy s (A).
@ Recall:

p= Y P xLAE)

feE{p}e,n
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Degenerate Brion's formula, discrete setting

o Given a face f, define
A; == AN lin(f) A = ANlin(f)h.
o Given a set A, let
Al = Projin s (A) AT = Projjy s (A).
@ Recall:
p= Y P xLAE)
fe{ple,n
Theorem (P. '24)

Suppose p is a rational polytope with respect to A. Then

Sa(pi €)= > > #HIN M+ Sy, (LGE):9),

felpYe n bIEN (A, L)

and each term on the RHS is well-defined (non-singular).

v
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The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions Nng indexed by rational
inner product spaces, mapping rational cones in W to meromorphic
functions on W satisfying the following remarkable properties:
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The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions Nng indexed by rational
inner product spaces, mapping rational cones in W to meromorphic
functions on W satisfying the following remarkable properties:

@ For any rational polyhedron q C W:

S@o= 3wl (@e) M),

feFace(q)
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The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions Nng indexed by rational
inner product spaces, mapping rational cones in W to meromorphic
functions on W satisfying the following remarkable properties:

@ For any rational polyhedron q C W:

S@o= 3wl (@e) M),

feFace(q)

(2] M[/v is invariant under shifting by I.

Carsten Peterson (IMJ-PRG) Degenerate Brion's formula March 4, 2025 27 /31



The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions Nng indexed by rational
inner product spaces, mapping rational cones in W to meromorphic
functions on W satisfying the following remarkable properties:

@ For any rational polyhedron q C W:

S@o= 3wl (@e) M),

feFace(q)
(2] M[/v is invariant under shifting by I.

© !, is a valuation on rational cones with any fixed vertex, and it sends
cones containing lines to zero.
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The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions Nng indexed by rational
inner product spaces, mapping rational cones in W to meromorphic
functions on W satisfying the following remarkable properties:

@ For any rational polyhedron q C W:

S@o= 3wl (@e) M),

feFace(q)

(2] M[/v is invariant under shifting by I.

© !, is a valuation on rational cones with any fixed vertex, and it sends
cones containing lines to zero.

@ For any rational cone M{,V(E; €) is holomorphic at 0.
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The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions ,ugv, indexed by rational
inner product spaces, mapping rational cones in W to meromorphic
functions on W satisfying the following remarkable properties:

@ For any rational polyhedron q C W:

S@o= 3wl (@e) M),

feFace(q)

(2] u{,v is invariant under shifting by I.

© !, is a valuation on rational cones with any fixed vertex, and it sends
cones containing lines to zero.

@ For any rational cone ,u{,V(E; €) is holomorphic at 0.

Proposition (P. '24)

The function 1}, (€ &) is holomorphic at every point in (V)"
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Degenerate Brion's formula, discrete setting version 2

Theorem (P. '24)
Suppose p is a rational polytope. Then
Sa(p; &) =

S owh@( X (X e @0 S, (C@:0)).

g€{pr}ten aCfelpten DIEN (A®A L)

and each term on the RHS is well-defined.
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Exponential integrals over families of polytopes

@ Brion's formula tells us that if £ is generic then

I(t-p€)= > It-o+%5¢) = Y 1(%5¢)- eer).

veVert(p) veVert(p)
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Exponential integrals over families of polytopes

@ Brion's formula tells us that if £ is generic then

I(t-p€)= > It-o+%5¢) = Y 1(%5¢)- eer).

veVert(p) veVert(p)

e If £ =0, then clearly

I(t - p;€) = vol(p) - £ ).
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Exponential integrals over families of polytopes

@ Brion's formula tells us that if £ is generic then

I(t-p€)= > It-o+%5¢) = Y 1(%5¢)- eer).

veVert(p) veVert(p)
e If £ =0, then clearly

I(t - p;€) = vol(p) - £ ).

@ Degenerate Brion's formula tells us

I(t-p:&) = > vol() - IOLCE(&);€) - tdimD . et(E,
fe{p}e
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Exponential sums over families of polytopes

@ Brion's formula tells us that if £ is generic and p is lattice polytope
then (t € N)

NEp) = 3 SpOslie)- et

veVert(p)
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Exponential sums over families of polytopes

@ Brion's formula tells us that if £ is generic and p is lattice polytope
then (t € N)

NEp) = 3 SpOslie)- et

veVert(p)

e If £ =0, then

Sa(t - p; &) = Ehrhart quasi-polynomial.
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Exponential sums over families of polytopes

@ Brion's formula tells us that if £ is generic and p is lattice polytope
then (t € N)

NEp) = 3 SpOslie)- et

veVert(p)

e If £ =0, then

Sa(t - p; &) = Ehrhart quasi-polynomial.

@ Degenerate Brion's formula tells us

explicit sum of terms of the form
quasi-polynomial x exponential

SA(t-p; &) =
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A view towards applications

@ Exponential integrals over polyhedra show up in analysis on symmetric
spaces.
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A view towards applications

@ Exponential integrals over polyhedra show up in analysis on symmetric

spaces.
@ Exponential sums over lattice points in polyhedra show up in analysis
on Bruhat-Tits buildings.
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A view towards applications

@ Exponential integrals over polyhedra show up in analysis on symmetric
spaces.

@ Exponential sums over lattice points in polyhedra show up in analysis
on Bruhat-Tits buildings.

@ Degenerate Brion's formula plays the role of Laplace’s
method/stationary phase.
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A view towards applications

@ Exponential integrals over polyhedra show up in analysis on symmetric
spaces.

@ Exponential sums over lattice points in polyhedra show up in analysis
on Bruhat-Tits buildings.

@ Degenerate Brion's formula plays the role of Laplace’s

method/stationary phase.
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