

A degenerate version of Brion's formula

Carsten Peterson

IMJ-PRG

March 4, 2025

One-dimensional warm-up

- If $\xi < 0$:

$$\int_0^\infty e^{\xi x} dx = -\frac{1}{\xi}.$$

One-dimensional warm-up

- If $\xi < 0$:

$$\int_0^\infty e^{\xi x} dx = -\frac{1}{\xi}.$$

- This extends to a meromorphic function with a pole at $\xi = 0$.

One-dimensional warm-up

- If $\xi < 0$:

$$\int_0^\infty e^{\xi x} dx = -\frac{1}{\xi}.$$

- This extends to a meromorphic function with a pole at $\xi = 0$.
- We have

$$\int_0^3 e^{\xi x} dx = -\frac{1}{\xi} + \frac{e^{3\xi}}{\xi}$$
$$\text{“} = \text{”} \int_0^\infty e^{\xi x} dx + \int_{-\infty}^3 e^{\xi x} dx.$$

One-dimensional warm-up

- If $\xi < 0$:

$$\int_0^\infty e^{\xi x} dx = -\frac{1}{\xi}.$$

- This extends to a meromorphic function with a pole at $\xi = 0$.
- We have

$$\int_0^3 e^{\xi x} dx = -\frac{1}{\xi} + \frac{e^{3\xi}}{\xi}$$

“ = ” $\int_0^\infty e^{\xi x} dx + \int_{-\infty}^3 e^{\xi x} dx.$

One-dimensional warm-up, cont.

- If $\xi < 0$:

$$\sum_{j=0}^{\infty} e^{\xi j} = \frac{1}{1 - e^{\xi}}.$$

One-dimensional warm-up, cont.

- If $\xi < 0$:

$$\sum_{j=0}^{\infty} e^{\xi j} = \frac{1}{1 - e^{\xi}}.$$

- This extends to a meromorphic function with poles at $2\pi i\mathbb{Z}$.

One-dimensional warm-up, cont.

- If $\xi < 0$:

$$\sum_{j=0}^{\infty} e^{\xi j} = \frac{1}{1 - e^{\xi}}.$$

- This extends to a meromorphic function with poles at $2\pi i\mathbb{Z}$.
- We have (geometric series formula)

$$\sum_{j=0}^3 e^{\xi j} = \frac{1}{1 - e^{\xi}} + \frac{e^{3\xi}}{1 - e^{-\xi}}$$

$$\text{“} = \text{”} \sum_{j=0}^{\infty} e^{\xi j} + \sum_{j=-\infty}^3 e^{\xi j}$$

One-dimensional warm-up, cont.

- If $\xi < 0$:

$$\sum_{j=0}^{\infty} e^{\xi j} = \frac{1}{1 - e^{\xi}}.$$

- This extends to a meromorphic function with poles at $2\pi i\mathbb{Z}$.
- We have (geometric series formula)

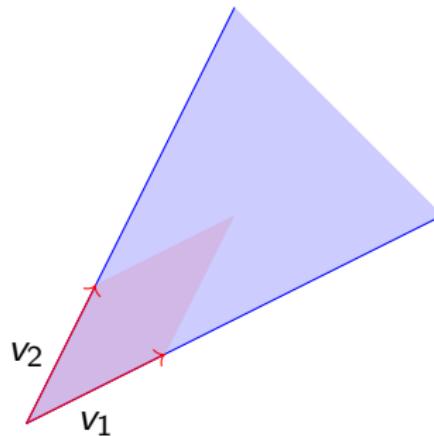
$$\sum_{j=0}^3 e^{\xi j} = \frac{1}{1 - e^{\xi}} + \frac{e^{3\xi}}{1 - e^{-\xi}}$$

$$" = " \sum_{j=0}^{\infty} e^{\xi j} + \sum_{j=-\infty}^3 e^{\xi j}$$

Exponential integral over a cone

- Given *simplicial* cone $\mathfrak{k} \subset V \simeq \mathbb{R}^n$ with conical basis v_1, \dots, v_n and $\xi \in \text{Int}(\mathfrak{k}^\circ)$ we have absolute convergence:

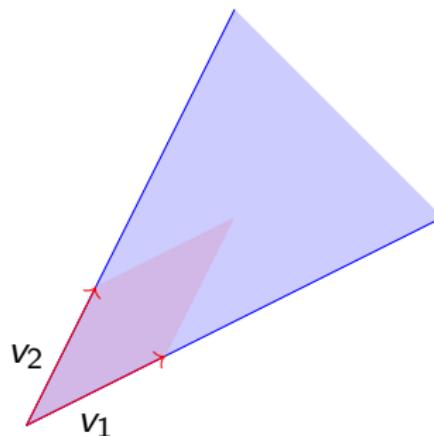
$$\int_{\mathfrak{k}} e^{\langle \xi, x \rangle} dx = \text{vol}(\square(v_1, \dots, v_n)) \prod_j \frac{1}{-\langle \xi, v_j \rangle}.$$



Exponential integral over a cone

- Given *simplicial* cone $\mathfrak{k} \subset V \simeq \mathbb{R}^n$ with conical basis v_1, \dots, v_n and $\xi \in \text{Int}(\mathfrak{k}^\circ)$ we have absolute convergence:

$$\int_{\mathfrak{k}} e^{\langle \xi, x \rangle} dx = \text{vol}(\square(v_1, \dots, v_n)) \prod_j \frac{1}{-\langle \xi, v_j \rangle}.$$

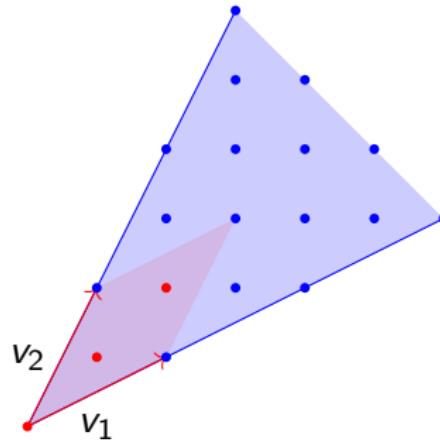


- This extends to a meromorphic function on $V_{\mathbb{C}}^*$ with singularities on $\langle \xi, v_j \rangle = 0$.

Exponential sum over a cone

- Given *rational* simplicial cone \mathfrak{k} with *primitive* conical basis v_1, \dots, v_n and $\xi \in \text{Int}(\mathfrak{k}^\circ)$ we have absolute convergence:

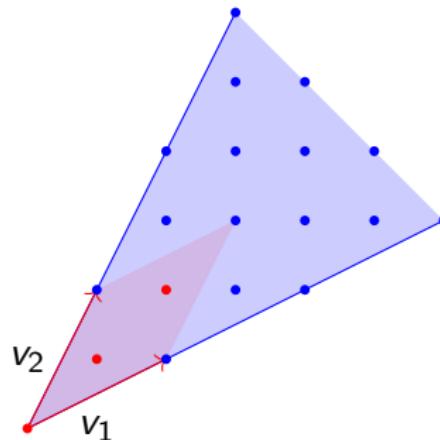
$$\sum_{\mathfrak{k} \cap \mathbb{Z}^n} e^{\langle \xi, \lambda \rangle} = \left(\sum_{\lambda \in \square(v_1, \dots, v_n) \cap \mathbb{Z}^n} e^{\langle \xi, \lambda \rangle} \right) \prod_j \frac{1}{1 - e^{\langle \xi, v_j \rangle}}.$$



Exponential sum over a cone

- Given *rational* simplicial cone \mathfrak{k} with *primitive* conical basis v_1, \dots, v_n and $\xi \in \text{Int}(\mathfrak{k}^\circ)$ we have absolute convergence:

$$\sum_{\mathfrak{k} \cap \mathbb{Z}^n} e^{\langle \xi, \lambda \rangle} = \left(\sum_{\lambda \in \square(v_1, \dots, v_n) \cap \mathbb{Z}^n} e^{\langle \xi, \lambda \rangle} \right) \prod_j \frac{1}{1 - e^{\langle \xi, v_j \rangle}}.$$



- This extends to a meromorphic function with singularities on $\langle \xi, v_j \rangle = 2\pi i k$ for some $k \in \mathbb{Z}$, i.e. $e^{\langle \xi, \cdot \rangle} = 1$ on $\mathbb{Z}^n \cap \mathbb{R}v_j$.

Exponential sum/integral over polyhedra

- Given a polyhedron q not containing a line, define

$$I(q; \xi) := \int_q e^{\langle \xi, x \rangle} dx$$

and extend meromorphically from the locus where it converges absolutely.

Exponential sum/integral over polyhedra

- Given a polyhedron q not containing a line, define

$$I(q; \xi) := \int_q e^{\langle \xi, x \rangle} dx$$

and extend meromorphically from the locus where it converges absolutely.

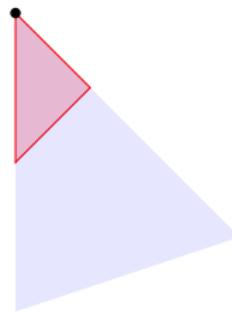
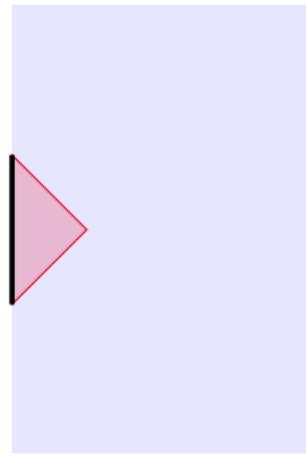
- Given a lattice Λ and a *rational* polyhedron q not containing a line, define

$$S_\Lambda(q; \xi) := \sum_{\lambda \in q \cap \Lambda} e^{\langle \xi, \lambda \rangle}$$

and extend meromorphically from the locus where it converges absolutely.

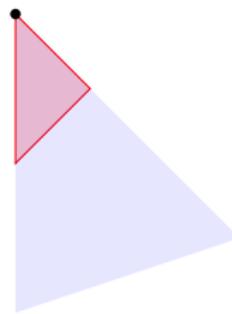
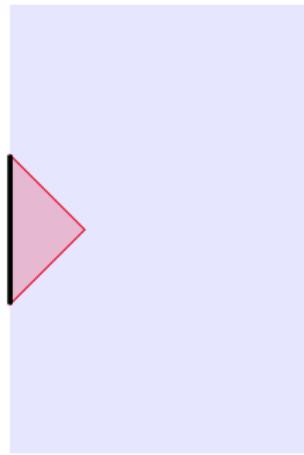
Tangent cones

- Each face f of a polytope p has a *tangent cone* s_f^p .



Tangent cones

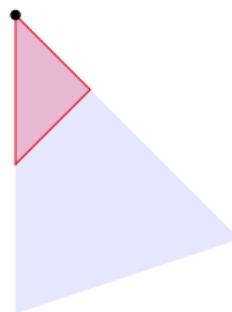
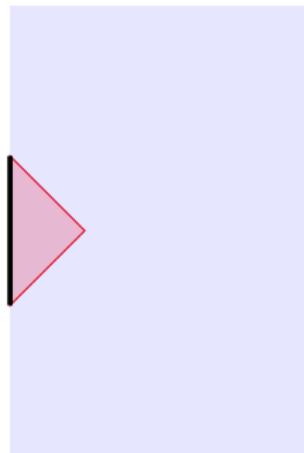
- Each face f of a polytope p has a *tangent cone* s_f^p .



- These cones are NOT pointed unless f is a vertex.

Tangent cones

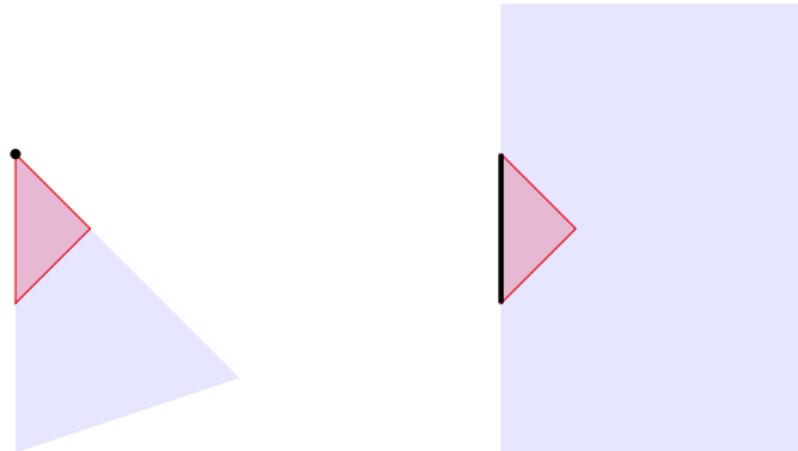
- Each face f of a polytope p has a *tangent cone* s_f^p .



- These cones are NOT pointed unless f is a vertex.
- $I(s_v^p; \xi)$ is singular when $\langle \xi, \cdot \rangle$ is constant on an edge e containing v .

Tangent cones

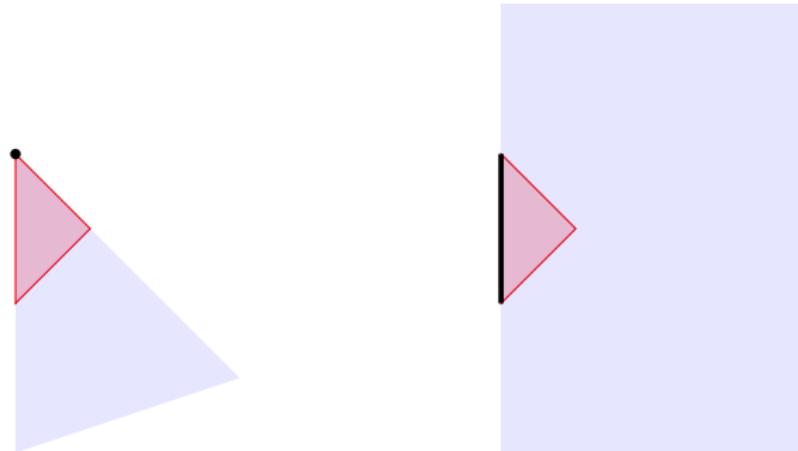
- Each face f of a polytope p has a *tangent cone* s_f^p .



- These cones are NOT pointed unless f is a vertex.
- $I(s_v^p; \xi)$ is singular when $\langle \xi, \cdot \rangle$ is constant on an edge e containing v .
- $S_\Lambda(s_v^p; \xi)$ is singular when $e^{\langle \xi, \cdot \rangle} = 1$ on $\Lambda \cap \text{lin}(e)$ for some edge e containing v .

Tangent cones

- Each face f of a polytope p has a *tangent cone* s_f^p .



- These cones are NOT pointed unless f is a vertex.
- $I(s_v^p; \xi)$ is singular when $\langle \xi, \cdot \rangle$ is constant on an edge e containing v .
- $S_\Lambda(s_v^p; \xi)$ is singular when $e^{\langle \xi, \cdot \rangle} = 1$ on $\Lambda \cap \text{lin}(e)$ for some edge e containing v .
- $\text{lin}(f)$ is the *linear subspace* parallel to f .

Brion's formula

Theorem (Brion, '88)

Suppose $\mathfrak{p} \subset V$ is a polytope. Then we have the following equality of meromorphic functions in $\xi \in V_{\mathbb{C}}^*$:

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{v} \in \text{Vert}(\mathfrak{p})} I(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi).$$

Brion's formula

Theorem (Brion, '88)

Suppose $\mathfrak{p} \subset V$ is a polytope. Then we have the following equality of meromorphic functions in $\xi \in V_{\mathbb{C}}^*$:

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{v} \in \text{Vert}(\mathfrak{p})} I(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi).$$

Theorem (Brion, '88)

Suppose $\mathfrak{p} \subset V$ is a rational polytope with respect to a lattice Λ . Then we have the following equality of meromorphic functions in $\xi \in V_{\mathbb{C}}^*$:

$$S_{\Lambda}(\mathfrak{p}; \xi) = \sum_{\mathfrak{v} \in \text{Vert}(\mathfrak{p})} S_{\Lambda}(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi).$$

Proofs of Brion's formula

- Brion's original proof '88: Riemann-Roch theorem on toric varieties

Proofs of Brion's formula

- Brion's original proof '88: Riemann-Roch theorem on toric varieties
- Barvinok '92: simpler proof using (among other things) Stokes' theorem

Proofs of Brion's formula

- Brion's original proof '88: Riemann-Roch theorem on toric varieties
- Barvinok '92: simpler proof using (among other things) Stokes' theorem
- We can give a slick proof using two black boxes.

Proofs of Brion's formula

- Brion's original proof '88: Riemann-Roch theorem on toric varieties
- Barvinok '92: simpler proof using (among other things) Stokes' theorem
- We can give a slick proof using two black boxes.
 - ① The Brianchon-Gram formula.

Proofs of Brion's formula

- Brion's original proof '88: Riemann-Roch theorem on toric varieties
- Barvinok '92: simpler proof using (among other things) Stokes' theorem
- We can give a slick proof using two black boxes.
 - ① The Brianchon-Gram formula.
 - ② The extension of I and S_Λ to valuations.

Virtual polyhedra and valuations

- We can represent a polyhedron q by its indicator function $[q]$.

Virtual polyhedra and valuations

- We can represent a polyhedron q by its indicator function $[q]$.
- The vector space generated by such $[q]$ is called the space of *virtual polyhedra*.

Virtual polyhedra and valuations

- We can represent a polyhedron q by its indicator function $[q]$.
- The vector space generated by such $[q]$ is called the space of *virtual polyhedra*.
- A linear map on this vector space is called a *valuation*.

The Brianchon-Gram formula

Theorem (Brianchon-Gram formula)

Suppose \mathfrak{p} is a polytope. Then

$$[\mathfrak{p}] = \sum_{\mathfrak{f} \in \text{Faces}(\mathfrak{p})} (-1)^{\dim(\mathfrak{f})} [\mathfrak{s}_{\mathfrak{f}}^{\mathfrak{p}}].$$

The Brianchon-Gram formula

Theorem (Brianchon-Gram formula)

Suppose \mathfrak{p} is a polytope. Then

$$[\mathfrak{p}] = \sum_{f \in \text{Faces}(\mathfrak{p})} (-1)^{\dim(f)} [\mathfrak{s}_f^{\mathfrak{p}}].$$

Every term on the RHS is a polyhedron containing a line except for the tangent cones of the vertices.

Extensions of I and S_Λ to valuations

Theorem (Lawrence, Brion '91)

Define $I(q; \xi) = 0$ if q contains a line. Then $[q] \mapsto I(q; \xi)$ defines a valuation.

Define $S_\Lambda(q; \xi) = 0$ if q is rational and contains a line. Then $[q] \mapsto S_\Lambda(q; \xi)$ defines a valuation (on rational polyhedra).

Extensions of I and S_Λ to valuations

Theorem (Lawrence, Brion '91)

Define $I(q; \xi) = 0$ if q contains a line. Then $[q] \mapsto I(q; \xi)$ defines a valuation.

Define $S_\Lambda(q; \xi) = 0$ if q is rational and contains a line. Then $[q] \mapsto S_\Lambda(q; \xi)$ defines a valuation (on rational polyhedra).

Applying I and S_Λ to Brianchon-Gram formula:

$$I(p; \xi) = \sum_f (-1)^{\dim(f)} I(s_f^p; \xi) = \sum_v I(s_v^p; \xi).$$

$$S_\Lambda(p; \xi) = \sum_f (-1)^{\dim(f)} S_\Lambda(s_f^p; \xi) = \sum_v S_\Lambda(s_v^p; \xi).$$

Why do we need a “degenerate” Brion’s formula?

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{v}} I(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi)$$

Why do we need a “degenerate” Brion’s formula?

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{v}} I(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi)$$

- The LHS is an *entire* function, but each term on the RHS is merely *meromorphic*. **How do the singularities cancel out?**

Why do we need a “degenerate” Brion’s formula?

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{v}} I(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi)$$

- The LHS is an *entire* function, but each term on the RHS is merely *meromorphic*. **How do the singularities cancel out?**
- Singularities occur when $\langle \xi, \cdot \rangle$ is constant on some positive dimensional face.

Why do we need a “degenerate” Brion’s formula?

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{v}} I(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi)$$

- The LHS is an *entire* function, but each term on the RHS is merely *meromorphic*. **How do the singularities cancel out?**
- Singularities occur when $\langle \xi, \cdot \rangle$ is constant on some positive dimensional face.
- If ξ is “generic” we can compute the LHS by plugging into the RHS, but if ξ is “degenerate” we get things like $\infty - \infty$.

Why do we need a “degenerate” Brion’s formula?

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{v}} I(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi)$$

- The LHS is an *entire* function, but each term on the RHS is merely *meromorphic*. **How do the singularities cancel out?**
- Singularities occur when $\langle \xi, \cdot \rangle$ is constant on some positive dimensional face.
- If ξ is “generic” we can compute the LHS by plugging into the RHS, but if ξ is “degenerate” we get things like $\infty - \infty$.
- Given a degenerate ξ , we want a formula like Brion’s formula such that

Why do we need a “degenerate” Brion’s formula?

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{v}} I(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi)$$

- The LHS is an *entire* function, but each term on the RHS is merely *meromorphic*. **How do the singularities cancel out?**
- Singularities occur when $\langle \xi, \cdot \rangle$ is constant on some positive dimensional face.
- If ξ is “generic” we can compute the LHS by plugging into the RHS, but if ξ is “degenerate” we get things like $\infty - \infty$.
- Given a degenerate ξ , we want a formula like Brion’s formula such that
 - ① **Each term only depends on some local geometry of \mathfrak{p} .**

Why do we need a “degenerate” Brion’s formula?

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{v}} I(\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi)$$

- The LHS is an *entire* function, but each term on the RHS is merely *meromorphic*. **How do the singularities cancel out?**
- Singularities occur when $\langle \xi, \cdot \rangle$ is constant on some positive dimensional face.
- If ξ is “generic” we can compute the LHS by plugging into the RHS, but if ξ is “degenerate” we get things like $\infty - \infty$.
- Given a degenerate ξ , we want a formula like Brion’s formula such that
 - ① **Each term only depends on some local geometry of \mathfrak{p} .**
 - ② **Each term is actually holomorphic at ξ , i.e. we can actually “plug in” at ξ .**

Gathering intuition about the degenerate setting

Heuristic: the singularities should cancel each other out in a way that gives information about the volume of the faces on which $\langle \xi, \cdot \rangle$ is constant.

Gathering intuition about the degenerate setting

Heuristic: the singularities should cancel each other out in a way that gives information about the volume of the faces on which $\langle \xi, \cdot \rangle$ is constant.

- If $\xi = 0$, then $I(\mathfrak{p}; \xi) = \text{vol}(\mathfrak{p})$ and $S_\Lambda(\mathfrak{p}; \xi) = \#\{\mathfrak{p} \cap \Lambda\}$.

Gathering intuition about the degenerate setting

Heuristic: the singularities should cancel each other out in a way that gives information about the volume of the faces on which $\langle \xi, \cdot \rangle$ is constant.

- If $\xi = 0$, then $I(\mathfrak{p}; \xi) = \text{vol}(\mathfrak{p})$ and $S_\Lambda(\mathfrak{p}; \xi) = \#\{\mathfrak{p} \cap \Lambda\}$.
- If $\mathfrak{p} = \mathfrak{p}_1 \times \mathfrak{p}_2$, and $\langle \xi, \cdot \rangle$ is constant on \mathfrak{p}_1 and no face of \mathfrak{p}_2 , then

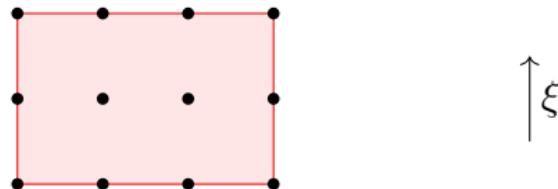
$$I(\mathfrak{p}; \xi) = \text{vol}(\mathfrak{p}_1) \cdot I(\mathfrak{p}_2; \xi|_{\mathfrak{p}_2}).$$

Gathering intuition about the degenerate setting

Heuristic: the singularities should cancel each other out in a way that gives information about the volume of the faces on which $\langle \xi, \cdot \rangle$ is constant.

- If $\xi = 0$, then $I(\mathfrak{p}; \xi) = \text{vol}(\mathfrak{p})$ and $S_\Lambda(\mathfrak{p}; \xi) = \#\{\mathfrak{p} \cap \Lambda\}$.
- If $\mathfrak{p} = \mathfrak{p}_1 \times \mathfrak{p}_2$, and $\langle \xi, \cdot \rangle$ is constant on \mathfrak{p}_1 and no face of \mathfrak{p}_2 , then

$$I(\mathfrak{p}; \xi) = \text{vol}(\mathfrak{p}_1) \cdot I(\mathfrak{p}_2; \xi|_{\mathfrak{p}_2}).$$



- If $\Lambda = \Lambda_1 \oplus \Lambda_2$ in a compatible way, and \mathfrak{p}_i are lattice polytopes, then

$$S_\Lambda(\mathfrak{p}; \xi) = \#\{\mathfrak{p}_1 \cap \Lambda_1\} \cdot S_{\Lambda_2}(\mathfrak{p}_2; \xi|_{\mathfrak{p}_2}).$$

Transverse cones

- From now on we assume we have an inner product $\langle \cdot, \cdot \rangle$ on V .

Transverse cones

- From now on we assume we have an inner product $\langle \cdot, \cdot \rangle$ on V .
- The *transverse cone* of a face f in \mathfrak{p} is

$$t_f^{\mathfrak{p}} := \text{Proj}_{\text{lin}(f)^\perp}(\mathfrak{s}_f^{\mathfrak{p}}).$$

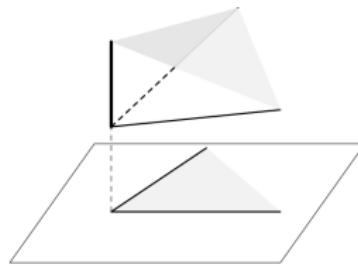


Figure: Image from Berline-Vergne '07

Transverse cones

- From now on we assume we have an inner product $\langle \cdot, \cdot \rangle$ on V .
- The *transverse cone* of a face f in \mathfrak{p} is

$$t_f^{\mathfrak{p}} := \text{Proj}_{\text{lin}(f)^\perp}(\mathfrak{s}_f^{\mathfrak{p}}).$$

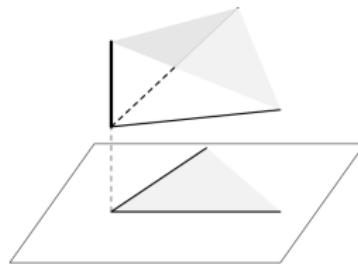


Figure: Image from Berline-Vergne '07

- $t_f^{\mathfrak{p}}$ is a *pointed* cone in $\text{lin}(f)^\perp$.

The main player: the alternating Levi cone

- Given $\xi \in V_C^*$, let $\{\mathfrak{p}\}_\xi$ denote the set of faces on which $\langle \xi, \cdot \rangle$ is constant.

The main player: the alternating Levi cone

- Given $\xi \in V_C^*$, let $\{\mathfrak{p}\}_\xi$ denote the set of faces on which $\langle \xi, \cdot \rangle$ is constant.
- Given $\mathfrak{f} \in \{\mathfrak{p}\}_\xi$ we define the *alternating Levi cone*:

$$\text{LC}_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \dots \subset \mathfrak{h}_\ell \in \text{mFl}_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, t_{\mathfrak{f}}^{\mathfrak{h}_1} \times t_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \dots \times t_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times t_{\mathfrak{h}_\ell}^{\mathfrak{p}},$$

where $\text{mFl}_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$ is all *flags* of faces in $\{\mathfrak{p}\}_\xi$ starting from \mathfrak{f} .

The main player: the alternating Levi cone

- Given $\xi \in V_C^*$, let $\{\mathfrak{p}\}_\xi$ denote the set of faces on which $\langle \xi, \cdot \rangle$ is constant.
- Given $\mathfrak{f} \in \{\mathfrak{p}\}_\xi$ we define the *alternating Levi cone*:

$$LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \dots \subset \mathfrak{h}_\ell \in mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, t_{\mathfrak{f}}^{\mathfrak{h}_1} \times t_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \dots \times t_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times t_{\mathfrak{h}_\ell}^{\mathfrak{p}},$$

where $mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$ is all *flags* of faces in $\{\mathfrak{p}\}_\xi$ starting from \mathfrak{f} .

- $LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$ is a *virtual cone* in $\text{lin}(\mathfrak{f})^\perp$.

The main player: the alternating Levi cone

- Given $\xi \in V_C^*$, let $\{\mathfrak{p}\}_\xi$ denote the set of faces on which $\langle \xi, \cdot \rangle$ is constant.
- Given $\mathfrak{f} \in \{\mathfrak{p}\}_\xi$ we define the *alternating Levi cone*:

$$LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \dots \subset \mathfrak{h}_\ell \in mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, t_{\mathfrak{f}}^{\mathfrak{h}_1} \times t_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \dots \times t_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times t_{\mathfrak{h}_\ell}^{\mathfrak{p}},$$

where $mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$ is all *flags* of faces in $\{\mathfrak{p}\}_\xi$ starting from \mathfrak{f} .

- $LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$ is a *virtual cone* in $\text{lin}(\mathfrak{f})^\perp$.
- Why “Levi”? For $SL(V)$:

The main player: the alternating Levi cone

- Given $\xi \in V_C^*$, let $\{\mathfrak{p}\}_\xi$ denote the set of faces on which $\langle \xi, \cdot \rangle$ is constant.
- Given $\mathfrak{f} \in \{\mathfrak{p}\}_\xi$ we define the *alternating Levi cone*:

$$LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \dots \subset \mathfrak{h}_\ell \in mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, t_{\mathfrak{f}}^{\mathfrak{h}_1} \times t_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \dots \times t_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times t_{\mathfrak{h}_\ell}^{\mathfrak{p}},$$

where $mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$ is all *flags* of faces in $\{\mathfrak{p}\}_\xi$ starting from \mathfrak{f} .

- $LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$ is a *virtual cone* in $\text{lin}(\mathfrak{f})^\perp$.
- Why “Levi”? For $SL(V)$:

parabolic subgroups \longleftrightarrow flags of subspaces

The main player: the alternating Levi cone

- Given $\xi \in V_C^*$, let $\{\mathfrak{p}\}_\xi$ denote the set of faces on which $\langle \xi, \cdot \rangle$ is constant.
- Given $\mathfrak{f} \in \{\mathfrak{p}\}_\xi$ we define the *alternating Levi cone*:

$$LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \dots \subset \mathfrak{h}_\ell \in mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, t_{\mathfrak{f}}^{\mathfrak{h}_1} \times t_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \dots \times t_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times t_{\mathfrak{h}_\ell}^{\mathfrak{p}},$$

where $mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$ is all *flags* of faces in $\{\mathfrak{p}\}_\xi$ starting from \mathfrak{f} .

- $LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$ is a *virtual cone* in $\text{lin}(\mathfrak{f})^\perp$.
- Why “Levi”? For $SL(V)$:

parabolic subgroups \longleftrightarrow flags of subspaces

Levi component \longleftrightarrow decomposition of V into subspaces compatible with the flag

A few examples

$$\text{LC}_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \cdots \subset \mathfrak{h}_\ell \in \text{mFl}_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, \mathfrak{t}_{\mathfrak{f}}^{\mathfrak{h}_1} \times \mathfrak{t}_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \cdots \times \mathfrak{t}_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times \mathfrak{t}_{\mathfrak{h}_\ell}^{\mathfrak{p}}$$

A few examples

$$LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \cdots \subset \mathfrak{h}_\ell \in mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \mathfrak{t}_{\mathfrak{f}}^{\mathfrak{h}_1} \times \mathfrak{t}_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \cdots \times \mathfrak{t}_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times \mathfrak{t}_{\mathfrak{h}_\ell}^{\mathfrak{p}}$$

- If ξ is *generic* then $\{\mathfrak{p}\}_\xi$ is just the vertices, and $LC_{\mathfrak{v}}^{\mathfrak{p}}(\xi) = \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}$.

A few examples

$$LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \cdots \subset \mathfrak{h}_\ell \in mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, t_{\mathfrak{f}}^{\mathfrak{h}_1} \times t_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \cdots \times t_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times t_{\mathfrak{h}_\ell}^{\mathfrak{p}}$$

- If ξ is *generic* then $\{\mathfrak{p}\}_\xi$ is just the vertices, and $LC_{\mathfrak{v}}^{\mathfrak{p}}(\xi) = \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}$.
- If \mathfrak{f} is ξ -*maximal*, then $LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) = t_{\mathfrak{f}}^{\mathfrak{p}}$.

A few examples

$$LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \cdots \subset \mathfrak{h}_\ell \in mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, t_{\mathfrak{f}}^{\mathfrak{h}_1} \times t_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \cdots \times t_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times t_{\mathfrak{h}_\ell}^{\mathfrak{p}}$$

- If ξ is *generic* then $\{\mathfrak{p}\}_\xi$ is just the vertices, and $LC_{\mathfrak{v}}^{\mathfrak{p}}(\xi) = \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}$.
- If \mathfrak{f} is ξ -*maximal*, then $LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) = t_{\mathfrak{f}}^{\mathfrak{p}}$.
- If $\xi = 0$, then

A few examples

$$LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \cdots \subset \mathfrak{h}_\ell \in mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, t_{\mathfrak{f}}^{\mathfrak{h}_1} \times t_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \cdots \times t_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times t_{\mathfrak{h}_\ell}^{\mathfrak{p}}$$

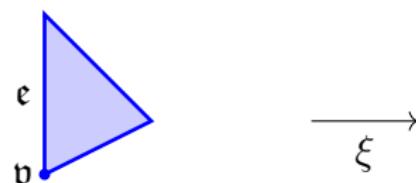
- If ξ is *generic* then $\{\mathfrak{p}\}_\xi$ is just the vertices, and $LC_{\mathfrak{v}}^{\mathfrak{p}}(\xi) = \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}$.
- If \mathfrak{f} is ξ -*maximal*, then $LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) = t_{\mathfrak{f}}^{\mathfrak{p}}$.
- If $\xi = 0$, then
 - ① If $\mathfrak{f} = \mathfrak{p}$, then $LC_{\mathfrak{p}}^{\mathfrak{p}}(\xi) = \{0\}$ in 0-dimensional space.

A few examples

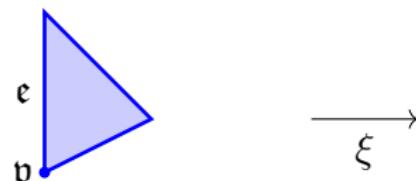
$$LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) := \sum_{\mathfrak{f} \subset \mathfrak{h}_1 \subset \cdots \subset \mathfrak{h}_\ell \in mFl_{\mathfrak{f}}^{\mathfrak{p}}(\xi)} (-1)^\ell \, t_{\mathfrak{f}}^{\mathfrak{h}_1} \times t_{\mathfrak{h}_1}^{\mathfrak{h}_2} \times \cdots \times t_{\mathfrak{h}_{\ell-1}}^{\mathfrak{h}_\ell} \times t_{\mathfrak{h}_\ell}^{\mathfrak{p}}$$

- If ξ is *generic* then $\{\mathfrak{p}\}_\xi$ is just the vertices, and $LC_{\mathfrak{v}}^{\mathfrak{p}}(\xi) = \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}$.
- If \mathfrak{f} is ξ -*maximal*, then $LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) = t_{\mathfrak{f}}^{\mathfrak{p}}$.
- If $\xi = 0$, then
 - ① If $\mathfrak{f} = \mathfrak{p}$, then $LC_{\mathfrak{p}}^{\mathfrak{p}}(\xi) = \{0\}$ in 0-dimensional space.
 - ② If $\mathfrak{f} \neq \mathfrak{p}$, then $LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi) = \emptyset$.

A more complicated example

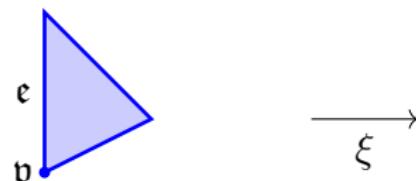


A more complicated example

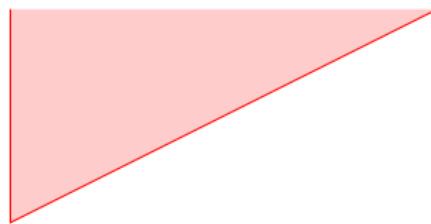


$$LC_v^p(\xi) = t_v^p - t_v^e \times t_e^p$$

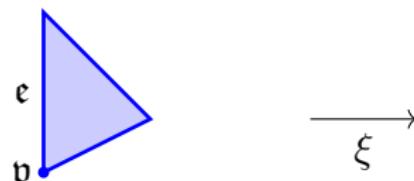
A more complicated example



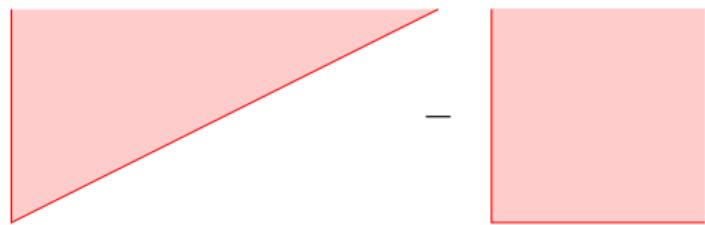
$$LC_v^p(\xi) = t_v^p - t_v^e \times t_e^p$$



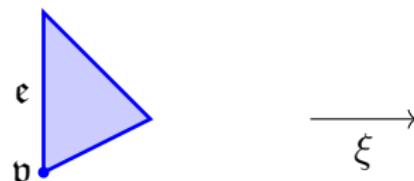
A more complicated example



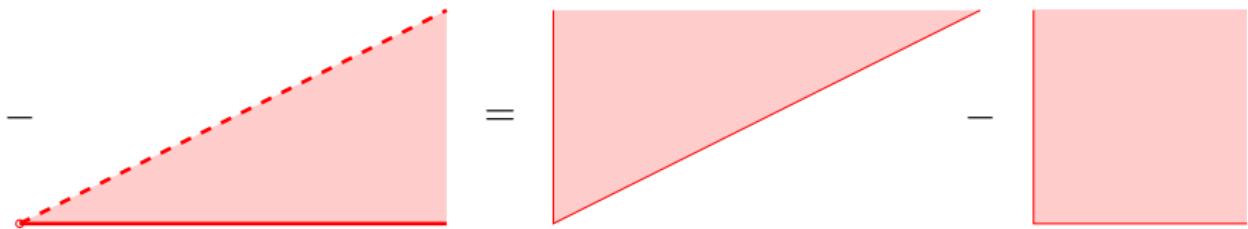
$$LC_v^p(\xi) = t_v^p - t_v^e \times t_e^p$$



A more complicated example



$$LC_v^p(\xi) = t_v^p - t_v^e \times t_e^p$$



Generalized Brianchon-Gram theorem

$$\mathfrak{f}^{\mathfrak{f}} := \text{Proj}_{\text{lin}(\mathfrak{f})}(\mathfrak{f})$$

Generalized Brianchon-Gram theorem

$$\mathfrak{f}^{\mathfrak{f}} := \text{Proj}_{\text{lin}(\mathfrak{f})}(\mathfrak{f})$$

Theorem (P. '24)

For any $\xi \in V_{\mathbb{C}}^*$, we have

$$\mathfrak{p} \equiv \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_{\xi}} \mathfrak{f}^{\mathfrak{f}} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$$

modulo virtual polyhedra containing lines.

Generalized Brianchon-Gram theorem

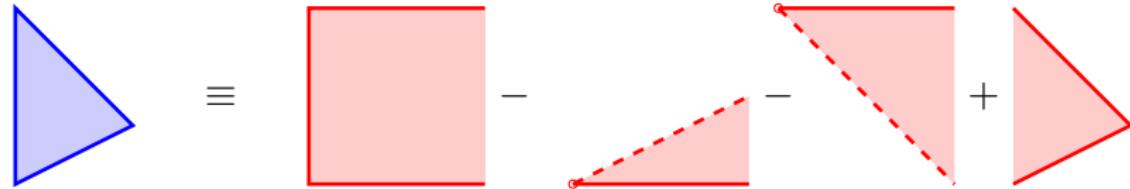
$$\mathfrak{f}^{\mathfrak{f}} := \text{Proj}_{\text{lin}(\mathfrak{f})}(\mathfrak{f})$$

Theorem (P. '24)

For any $\xi \in V_{\mathbb{C}}^*$, we have

$$\mathfrak{p} \equiv \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_{\xi}} \mathfrak{f}^{\mathfrak{f}} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$$

modulo virtual polyhedra containing lines.



Degenerate Brion's formula: continuous version

$$\mathfrak{p} \equiv \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_\xi} \mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$$

Degenerate Brion's formula: continuous version

$$\mathfrak{p} \equiv \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_\xi} \mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$$

Theorem (P. '24)

The function $I(LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$ with $\alpha \in (\text{lin}(\mathfrak{f})^\perp)_{\mathbb{C}}^*$ is holomorphic at $\alpha = \xi$.

Degenerate Brion's formula: continuous version

$$\mathfrak{p} \equiv \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_\xi} \mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$$

Theorem (P. '24)

The function $I(LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$ with $\alpha \in (\text{lin}(\mathfrak{f})^\perp)_{\mathbb{C}}^*$ is holomorphic at $\alpha = \xi$.

$$I(\mathfrak{q}_1 \times \mathfrak{q}_2; \xi) = I(\mathfrak{q}_1; \xi|_{\text{lin}(\mathfrak{q}_1)}) \cdot I(\mathfrak{q}_2; \xi|_{\text{lin}(\mathfrak{q}_2)})$$

Degenerate Brion's formula: continuous version

$$\mathfrak{p} \equiv \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_\xi} \mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi)$$

Theorem (P. '24)

The function $I(LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$ with $\alpha \in (\text{lin}(\mathfrak{f})^\perp)_{\mathbb{C}}^*$ is holomorphic at $\alpha = \xi$.

$$I(\mathfrak{q}_1 \times \mathfrak{q}_2; \xi) = I(\mathfrak{q}_1; \xi|_{\text{lin}(\mathfrak{q}_1)}) \cdot I(\mathfrak{q}_2; \xi|_{\text{lin}(\mathfrak{q}_2)})$$

Corollary (P. '24)

We have

$$I(\mathfrak{p}; \xi) = \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_\xi} \text{vol}(\mathfrak{f}) \cdot I(LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \xi),$$

and each term on the RHS is well-defined (non-singular).

The discrete setting?

Corollary (P. '24)

Suppose \mathfrak{p} is a rational polytope. Then for any $\xi \in V_{\mathbb{C}}^*$ we have the following equality of meromorphic functions in α :

$$S_{\Lambda}(\mathfrak{p}; \alpha) = \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_{\xi}} S_{\Lambda}(\mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha).$$

The discrete setting?

Corollary (P. '24)

Suppose \mathfrak{p} is a rational polytope. Then for any $\xi \in V_{\mathbb{C}}^*$ we have the following equality of meromorphic functions in α :

$$S_{\Lambda}(\mathfrak{p}; \alpha) = \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_{\xi}} S_{\Lambda}(\mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha).$$

Three related issues:

The discrete setting?

Corollary (P. '24)

Suppose \mathfrak{p} is a rational polytope. Then for any $\xi \in V_{\mathbb{C}}^*$ we have the following equality of meromorphic functions in α :

$$S_{\Lambda}(\mathfrak{p}; \alpha) = \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_{\xi}} S_{\Lambda}(\mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha).$$

Three related issues:

- ① **Can we split up $S_{\Lambda}(\mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$ into something resembling $S_{\Lambda}(\mathfrak{f}; \alpha) \cdot S_{\Lambda}(LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$?**

The discrete setting?

Corollary (P. '24)

Suppose \mathfrak{p} is a rational polytope. Then for any $\xi \in V_{\mathbb{C}}^*$ we have the following equality of meromorphic functions in α :

$$S_{\Lambda}(\mathfrak{p}; \alpha) = \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_{\xi}} S_{\Lambda}(\mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha).$$

Three related issues:

- ① **Can we split up $S_{\Lambda}(\mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$ into something resembling $S_{\Lambda}(\mathfrak{f}; \alpha) \cdot S_{\Lambda}(LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$?**
- ② **If $\xi \in 2\pi i \Lambda^* \setminus 0$, then $e^{\langle \xi, \cdot \rangle} = 1 = e^{\langle 0, \cdot \rangle}$ on Λ , but $\{\mathfrak{p}\}_{\xi} \neq \{\mathfrak{p}\}_0$. Thus $\{\mathfrak{p}\}_{\xi}$ is not the right set to study.**

The discrete setting?

Corollary (P. '24)

Suppose \mathfrak{p} is a rational polytope. Then for any $\xi \in V_{\mathbb{C}}^*$ we have the following equality of meromorphic functions in α :

$$S_{\Lambda}(\mathfrak{p}; \alpha) = \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_{\xi}} S_{\Lambda}(\mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha).$$

Three related issues:

- ① **Can we split up $S_{\Lambda}(\mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$ into something resembling $S_{\Lambda}(\mathfrak{f}; \alpha) \cdot S_{\Lambda}(LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$?**
- ② **If $\xi \in 2\pi i \Lambda^* \setminus 0$, then $e^{\langle \xi, \cdot \rangle} = 1 = e^{\langle 0, \cdot \rangle}$ on Λ , but $\{\mathfrak{p}\}_{\xi} \neq \{\mathfrak{p}\}_0$. Thus $\{\mathfrak{p}\}_{\xi}$ is not the right set to study.**
- ③ **Is $S_{\Lambda}(\mathfrak{f} \times LC_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \alpha)$ holomorphic at $\alpha = \xi$?**

Splitting up S_Λ of a product

- From now on we assume our inner product is *rational*.

Splitting up S_Λ of a product

- From now on we assume our inner product is *rational*.
- Suppose $V = W_1 \oplus W_2$ with W_1, W_2 orthogonal rational subspaces.

$$\Lambda_i = \Lambda \cap W_i \quad \Lambda^i = \text{Proj}_{W_i}(\Lambda)$$

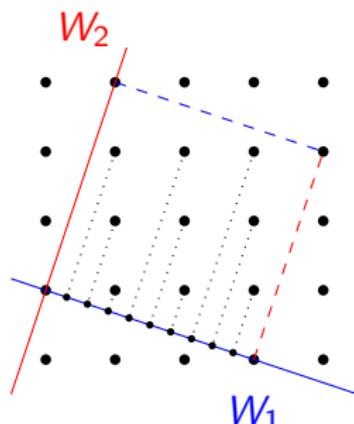
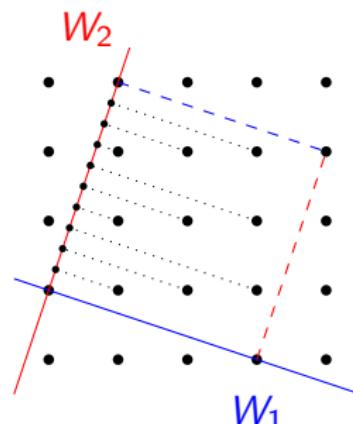
Splitting up S_Λ of a product

- From now on we assume our inner product is *rational*.
- Suppose $V = W_1 \oplus W_2$ with W_1, W_2 orthogonal rational subspaces.

$$\Lambda_i = \Lambda \cap W_i \quad \Lambda^i = \text{Proj}_{W_i}(\Lambda)$$

- We have

$$\Lambda^1 / \Lambda_1 \xleftarrow[\phi_1]{\sim} \Lambda / (\Lambda_1 \oplus \Lambda_2) \xrightarrow[\phi_2]{\sim} \Lambda^2 / \Lambda_2.$$



Splitting up S_Λ of a product, cont.

$$\Lambda_i = \Lambda \cap W_i \quad \Lambda^i = \text{Proj}_{W_i}(\Lambda)$$

$$\Lambda^1/\Lambda_1 \xleftarrow[\phi_1]{\sim} \Lambda/(\Lambda_1 \oplus \Lambda_2) \xrightarrow[\phi_2]{\sim} \Lambda^2/\Lambda_2.$$

Splitting up S_Λ of a product, cont.

$$\Lambda_i = \Lambda \cap W_i \quad \Lambda^i = \text{Proj}_{W_i}(\Lambda)$$

$$\Lambda^1/\Lambda_1 \xleftarrow[\phi_1]{\sim} \Lambda/(\Lambda_1 \oplus \Lambda_2) \xrightarrow[\phi_2]{\sim} \Lambda^2/\Lambda_2.$$

Proposition (P. '24)

If $q_i \subset W_i$ are polyhedra and $\xi = \xi_1 + \xi_2$ then

$$S_\Lambda(q_1 \times q_2; \xi) = \sum_{[\gamma] \in \Lambda/(\Lambda_1 \oplus \Lambda_2)} S_{\phi_1([\gamma]) + \Lambda_1}(q_1; \xi_1) \cdot S_{\phi_2([\gamma]) + \Lambda_2}(q_2; \xi_2).$$

The replacement for $\{\mathfrak{p}\}_\xi$ and the locus $(V_{\mathbb{C}}^*)^\wedge$

Given $\xi \in V_{\mathbb{C}}^*$, let \tilde{V} be the subspace spanned by sublattice on which $e^{\langle \xi, \lambda \rangle} = 1$.

The replacement for $\{\mathfrak{p}\}_\xi$ and the locus $(V_{\mathbb{C}}^*)^\wedge$

Given $\xi \in V_{\mathbb{C}}^*$, let \tilde{V} be the subspace spanned by sublattice on which $e^{\langle \xi, \lambda \rangle} = 1$. Define

$$\tilde{\xi} = \begin{cases} 0 & \text{on } \tilde{V} \\ \xi & \text{on } \tilde{V}^\perp \end{cases}$$

The replacement for $\{\mathfrak{p}\}_\xi$ and the locus $(V_{\mathbb{C}}^*)^\Lambda$

Given $\xi \in V_{\mathbb{C}}^*$, let \tilde{V} be the subspace spanned by sublattice on which $e^{\langle \xi, \lambda \rangle} = 1$. Define

$$\tilde{\xi} = \begin{cases} 0 & \text{on } \tilde{V} \\ \xi & \text{on } \tilde{V}^\perp \end{cases}$$

- ④ $\tilde{\xi} \in (V_{\mathbb{C}}^*)^\Lambda := \{\alpha : \text{ if } e^{\langle \alpha, \lambda \rangle} = 1 \text{ for some } \lambda \in \Lambda, \text{ then } \langle \alpha, \lambda \rangle = 0\}$.

The replacement for $\{\mathfrak{p}\}_\xi$ and the locus $(V_{\mathbb{C}}^*)^\Lambda$

Given $\xi \in V_{\mathbb{C}}^*$, let \tilde{V} be the subspace spanned by sublattice on which $e^{\langle \xi, \lambda \rangle} = 1$. Define

$$\tilde{\xi} = \begin{cases} 0 & \text{on } \tilde{V} \\ \xi & \text{on } \tilde{V}^\perp \end{cases}$$

- ① $\tilde{\xi} \in (V_{\mathbb{C}}^*)^\Lambda := \{\alpha : \text{ if } e^{\langle \alpha, \lambda \rangle} = 1 \text{ for some } \lambda \in \Lambda, \text{ then } \langle \alpha, \lambda \rangle = 0\}.$
- ② $e^{\langle \xi, \cdot \rangle} = e^{\langle \tilde{\xi}, \cdot \rangle}$ on f.i. sublattice $\tilde{\Lambda} \leq \Lambda$.

The replacement for $\{\mathfrak{p}\}_\xi$ and the locus $(V_{\mathbb{C}}^*)^\Lambda$

Given $\xi \in V_{\mathbb{C}}^*$, let \tilde{V} be the subspace spanned by sublattice on which $e^{\langle \xi, \lambda \rangle} = 1$. Define

$$\tilde{\xi} = \begin{cases} 0 & \text{on } \tilde{V} \\ \xi & \text{on } \tilde{V}^\perp \end{cases}$$

- ① $\tilde{\xi} \in (V_{\mathbb{C}}^*)^\Lambda := \{\alpha : \text{ if } e^{\langle \alpha, \lambda \rangle} = 1 \text{ for some } \lambda \in \Lambda, \text{ then } \langle \alpha, \lambda \rangle = 0\}.$
- ② $e^{\langle \xi, \cdot \rangle} = e^{\langle \tilde{\xi}, \cdot \rangle}$ on f.i. sublattice $\tilde{\Lambda} \leq \Lambda$.
- ③ $\{\mathfrak{p}\}_{\xi, \Lambda} := \{\mathfrak{p}\}_{\tilde{\xi}} = \{\mathfrak{f} : e^{\langle \xi, \cdot \rangle} = 1 \text{ on f.i. sublattice of } \text{lin}(\mathfrak{f}) \cap \Lambda\}$

The replacement for $\{\mathfrak{p}\}_\xi$ and the locus $(V_{\mathbb{C}}^*)^\Lambda$

Given $\xi \in V_{\mathbb{C}}^*$, let \tilde{V} be the subspace spanned by sublattice on which $e^{\langle \xi, \lambda \rangle} = 1$. Define

$$\tilde{\xi} = \begin{cases} 0 & \text{on } \tilde{V} \\ \xi & \text{on } \tilde{V}^\perp \end{cases}$$

- ① $\tilde{\xi} \in (V_{\mathbb{C}}^*)^\Lambda := \{\alpha : \text{if } e^{\langle \alpha, \lambda \rangle} = 1 \text{ for some } \lambda \in \Lambda, \text{ then } \langle \alpha, \lambda \rangle = 0\}$.
- ② $e^{\langle \xi, \cdot \rangle} = e^{\langle \tilde{\xi}, \cdot \rangle}$ on f.i. sublattice $\tilde{\Lambda} \leq \Lambda$.
- ③ $\{\mathfrak{p}\}_{\xi, \Lambda} := \{\mathfrak{p}\}_{\tilde{\xi}} = \{\mathfrak{f} : e^{\langle \xi, \cdot \rangle} = 1 \text{ on f.i. sublattice of } \text{lin}(\mathfrak{f}) \cap \Lambda\}$
- ④ $S_\Lambda(\mathfrak{p}; \xi) = \sum_{[\gamma] \in \Lambda/\tilde{\Lambda}} e^{\langle \xi, \gamma^{\tilde{V}} \rangle} S_{[\gamma]+\tilde{\Lambda}}(\mathfrak{p}; \tilde{\xi})$

The replacement for $\{\mathfrak{p}\}_\xi$ and the locus $(V_{\mathbb{C}}^*)^\Lambda$

Given $\xi \in V_{\mathbb{C}}^*$, let \tilde{V} be the subspace spanned by sublattice on which $e^{\langle \xi, \lambda \rangle} = 1$. Define

$$\tilde{\xi} = \begin{cases} 0 & \text{on } \tilde{V} \\ \xi & \text{on } \tilde{V}^\perp \end{cases}$$

- ① $\tilde{\xi} \in (V_{\mathbb{C}}^*)^\Lambda := \{\alpha : \text{if } e^{\langle \alpha, \lambda \rangle} = 1 \text{ for some } \lambda \in \Lambda, \text{ then } \langle \alpha, \lambda \rangle = 0\}$.
- ② $e^{\langle \xi, \cdot \rangle} = e^{\langle \tilde{\xi}, \cdot \rangle}$ on f.i. sublattice $\tilde{\Lambda} \leq \Lambda$.
- ③ $\{\mathfrak{p}\}_{\xi, \Lambda} := \{\mathfrak{p}\}_{\tilde{\xi}} = \{\mathfrak{f} : e^{\langle \xi, \cdot \rangle} = 1 \text{ on f.i. sublattice of } \text{lin}(\mathfrak{f}) \cap \Lambda\}$
- ④ $S_\Lambda(\mathfrak{p}; \xi) = \sum_{[\gamma] \in \Lambda/\tilde{\Lambda}} e^{\langle \xi, \gamma^{\tilde{V}} \rangle} S_{[\gamma]+\tilde{\Lambda}}(\mathfrak{p}; \tilde{\xi})$

Upshot: we should use $\{\mathfrak{p}\}_{\xi, \Lambda}$ and we can reduce to the case that $\xi \in (V_{\mathbb{C}}^*)^\Lambda$.

Holomorphicity

Theorem (P. '24)

Suppose $f \in \{p\}_{\xi, \Lambda}$. Then $S_\Lambda(LC_f^p(\tilde{\xi}); \alpha)$ is holomorphic at $\alpha = \xi$.

Holomorphicity

Theorem (P. '24)

Suppose $f \in \{\mathfrak{p}\}_{\xi, \Lambda}$. Then $S_\Lambda(LC_f^p(\tilde{\xi}); \alpha)$ is holomorphic at $\alpha = \xi$.

- The proof uses the *local Euler-Maclaurin formula* of Berline-Vergne '07.

Holomorphicity

Theorem (P. '24)

Suppose $f \in \{\mathfrak{p}\}_{\xi, \Lambda}$. Then $S_\Lambda(LC_f^p(\tilde{\xi}); \alpha)$ is holomorphic at $\alpha = \xi$.

- The proof uses the *local Euler-Maclaurin formula* of Berline-Vergne '07.
- Euler-Maclaurin formulas provide exact relations between $I(q; \xi)$ and $S_\Lambda(q; \xi)$.

Holomorphicity

Theorem (P. '24)

Suppose $f \in \{\mathfrak{p}\}_{\xi, \Lambda}$. Then $S_\Lambda(LC_f^{\mathfrak{p}}(\tilde{\xi}); \alpha)$ is holomorphic at $\alpha = \xi$.

- The proof uses the *local Euler-Maclaurin formula* of Berline-Vergne '07.
- Euler-Maclaurin formulas provide exact relations between $I(\mathfrak{q}; \xi)$ and $S_\Lambda(\mathfrak{q}; \xi)$.
- Deeply connected to the Riemann-Roch theorem on toric varieties (Pukhlikov-Khovanskii '92).

Holomorphicity

Theorem (P. '24)

Suppose $f \in \{\mathfrak{p}\}_{\xi, \Lambda}$. Then $S_\Lambda(LC_f^{\mathfrak{p}}(\tilde{\xi}); \alpha)$ is holomorphic at $\alpha = \xi$.

- The proof uses the *local Euler-Maclaurin formula* of Berline-Vergne '07.
- Euler-Maclaurin formulas provide exact relations between $I(q; \xi)$ and $S_\Lambda(q; \xi)$.
- Deeply connected to the Riemann-Roch theorem on toric varieties (Pukhlikov-Khovanskii '92).

Bernoulli numbers \longrightarrow generating function $\frac{x}{1 - e^{-x}}$ \longrightarrow Todd operators

Degenerate Brion's formula, discrete setting

- Given a face f , define

$$\Lambda_f := \Lambda \cap \text{lin}(f) \quad \Lambda_{f^\perp} := \Lambda \cap \text{lin}(f)^\perp.$$

Degenerate Brion's formula, discrete setting

- Given a face f , define

$$\Lambda_f := \Lambda \cap \text{lin}(f) \quad \Lambda_{f^\perp} := \Lambda \cap \text{lin}(f)^\perp.$$

- Given a set A , let

$$A^f := \text{Proj}_{\text{lin}(f)}(A) \quad A^{f^\perp} := \text{Proj}_{\text{lin}(f)^\perp}(A).$$

Degenerate Brion's formula, discrete setting

- Given a face f , define

$$\Lambda_f := \Lambda \cap \text{lin}(f) \quad \Lambda_{f^\perp} := \Lambda \cap \text{lin}(f)^\perp.$$

- Given a set A , let

$$A^f := \text{Proj}_{\text{lin}(f)}(A) \quad A^{f^\perp} := \text{Proj}_{\text{lin}(f)^\perp}(A).$$

- Recall:

$$\mathfrak{p} \equiv \sum_{f \in \{\mathfrak{p}\}_{\xi, \Lambda}} f^f \times LC_f^{\mathfrak{p}}(\tilde{\xi})$$

Degenerate Brion's formula, discrete setting

- Given a face f , define

$$\Lambda_f := \Lambda \cap \text{lin}(f) \quad \Lambda_{f^\perp} := \Lambda \cap \text{lin}(f)^\perp.$$

- Given a set A , let

$$A^f := \text{Proj}_{\text{lin}(f)}(A) \quad A^{f^\perp} := \text{Proj}_{\text{lin}(f)^\perp}(A).$$

- Recall:

$$\mathfrak{p} \equiv \sum_{f \in \{\mathfrak{p}\}_{\xi, \Lambda}} f^f \times LC_f^{\mathfrak{p}}(\tilde{\xi})$$

Theorem (P. '24)

Suppose \mathfrak{p} is a rational polytope with respect to Λ . Then

$$S_{\Lambda}(\mathfrak{p}; \xi) = \sum_{f \in \{\mathfrak{p}\}_{\xi, \Lambda}} \sum_{[\gamma] \in \Lambda / (\Lambda_f \oplus \Lambda_{f^\perp})} \#\{f^f \cap ([\gamma^f] + \Lambda_f)\} \cdot S_{[\gamma^f] + \Lambda_{f^\perp}}(LC_f^{\mathfrak{p}}(\tilde{\xi}); \xi),$$

and each term on the RHS is well-defined (non-singular).

The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions μ_W^Γ , indexed by rational inner product spaces, mapping rational cones in W to meromorphic functions on $W_{\mathbb{C}}^*$ satisfying the following remarkable properties:

The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions μ_W^Γ , indexed by rational inner product spaces, mapping rational cones in W to meromorphic functions on $W_{\mathbb{C}}^*$ satisfying the following remarkable properties:

- ① For any rational polyhedron $q \subset W$:

$$S_\Gamma(q; \xi) = \sum_{f \in \text{Face}(q)} \mu_{f^\perp}^{\Gamma_f^\perp}(t_f^q; \xi) \cdot I^\Gamma_f(f; \xi).$$

The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions μ_W^Γ , indexed by rational inner product spaces, mapping rational cones in W to meromorphic functions on $W_{\mathbb{C}}^*$ satisfying the following remarkable properties:

- ① For any rational polyhedron $q \subset W$:

$$S_\Gamma(q; \xi) = \sum_{f \in \text{Face}(q)} \mu_{f^\perp}^{\Gamma_f^\perp}(t_f^q; \xi) \cdot I^\Gamma_f(f; \xi).$$

- ② μ_W^Γ is invariant under shifting by Γ .

The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions μ_W^Γ , indexed by rational inner product spaces, mapping rational cones in W to meromorphic functions on $W_{\mathbb{C}}^*$ satisfying the following remarkable properties:

- ① For any rational polyhedron $q \subset W$:

$$S_\Gamma(q; \xi) = \sum_{f \in \text{Face}(q)} \mu_{f^\perp}^{\Gamma_f^\perp}(t_f^q; \xi) \cdot I^{\Gamma_f}(f; \xi).$$

- ② μ_W^Γ is invariant under shifting by Γ .
- ③ μ_W^Γ is a valuation on rational cones with any fixed vertex, and it sends cones containing lines to zero.

The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions μ_W^Γ , indexed by rational inner product spaces, mapping rational cones in W to meromorphic functions on $W_{\mathbb{C}}^*$ satisfying the following remarkable properties:

- ① For any rational polyhedron $q \subset W$:

$$S_\Gamma(q; \xi) = \sum_{f \in \text{Face}(q)} \mu_{f^\perp}^{\Gamma_f^\perp}(t_f^q; \xi) \cdot I^{\Gamma_f}(f; \xi).$$

- ② μ_W^Γ is invariant under shifting by Γ .
- ③ μ_W^Γ is a valuation on rational cones with any fixed vertex, and it sends cones containing lines to zero.
- ④ For any rational cone $\mu_W^\Gamma(k; \xi)$ is holomorphic at 0.

The local Euler-Maclaurin formula of Berline-Vergne

Berline-Vergne '07 construct a family of functions μ_W^Γ , indexed by rational inner product spaces, mapping rational cones in W to meromorphic functions on $W_{\mathbb{C}}^*$ satisfying the following remarkable properties:

- ① For any rational polyhedron $q \subset W$:

$$S_\Gamma(q; \xi) = \sum_{f \in \text{Face}(q)} \mu_{f^\perp}^{\Gamma_f^\perp}(t_f^q; \xi) \cdot I^{\Gamma_f}(f; \xi).$$

- ② μ_W^Γ is invariant under shifting by Γ .
- ③ μ_W^Γ is a valuation on rational cones with any fixed vertex, and it sends cones containing lines to zero.
- ④ For any rational cone $\mu_W^\Gamma(\ell; \xi)$ is holomorphic at 0.

Proposition (P. '24)

The function $\mu_W^\Gamma(\ell; \xi)$ is holomorphic at every point in $(V_{\mathbb{C}}^*)^\Gamma$.

Degenerate Brion's formula, discrete setting version 2

Theorem (P. '24)

Suppose \mathfrak{p} is a rational polytope. Then

$$S_\Lambda(\mathfrak{p}; \xi) =$$

$$\sum_{\mathfrak{g} \in \{\mathfrak{p}\}_{\xi, \Lambda}} \text{vol}^{\Lambda_{\mathfrak{g}}}(\mathfrak{g}) \left(\sum_{\mathfrak{g} \subseteq \mathfrak{f} \in \{\mathfrak{p}\}_{\xi, \Lambda}} \left(\sum_{[\gamma] \in \Lambda / (\Lambda_{\mathfrak{f}} \oplus \Lambda_{\mathfrak{f}}^\perp)} \mu_{\text{lin}(\mathfrak{f}) \cap \text{lin}(\mathfrak{g})^\perp}^{([\gamma] + \Lambda_{\mathfrak{f}})_{\mathfrak{g}}^\perp}(\mathfrak{t}_{\mathfrak{g}}^{\mathfrak{f}}; 0) \cdot S_{[\gamma]^\perp + \Lambda_{\mathfrak{f}}^\perp}(\text{LC}_{\mathfrak{f}}^{\mathfrak{p}}(\tilde{\xi}); \xi) \right) \right).$$

and each term on the RHS is well-defined.

Exponential integrals over families of polytopes

- Brion's formula tells us that if ξ is generic then

$$I(t \cdot \mathfrak{p}; \xi) = \sum_{v \in \text{Vert}(\mathfrak{p})} I(t \cdot \mathfrak{v} + {}^0 \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi) = \sum_{\mathfrak{v} \in \text{Vert}(\mathfrak{p})} I({}^0 \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi) \cdot e^{t \langle \xi, \mathfrak{v} \rangle}.$$

Exponential integrals over families of polytopes

- Brion's formula tells us that if ξ is generic then

$$I(t \cdot \mathfrak{p}; \xi) = \sum_{v \in \text{Vert}(\mathfrak{p})} I(t \cdot \mathfrak{v} + {}^0 \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi) = \sum_{\mathfrak{v} \in \text{Vert}(\mathfrak{p})} I({}^0 \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi) \cdot e^{t \langle \xi, \mathfrak{v} \rangle}.$$

- If $\xi = 0$, then clearly

$$I(t \cdot \mathfrak{p}; \xi) = \text{vol}(\mathfrak{p}) \cdot t^{\dim(\mathfrak{p})}.$$

Exponential integrals over families of polytopes

- Brion's formula tells us that if ξ is generic then

$$I(t \cdot \mathfrak{p}; \xi) = \sum_{v \in \text{Vert}(\mathfrak{p})} I(t \cdot \mathfrak{v} + {}^0\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi) = \sum_{\mathfrak{v} \in \text{Vert}(\mathfrak{p})} I({}^0\mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi) \cdot e^{t\langle \xi, \mathfrak{v} \rangle}.$$

- If $\xi = 0$, then clearly

$$I(t \cdot \mathfrak{p}; \xi) = \text{vol}(\mathfrak{p}) \cdot t^{\dim(\mathfrak{p})}.$$

- Degenerate Brion's formula tells us

$$I(t \cdot \mathfrak{p}; \xi) = \sum_{\mathfrak{f} \in \{\mathfrak{p}\}_{\xi}} \text{vol}(\mathfrak{f}) \cdot I({}^0\text{LC}_{\mathfrak{f}}^{\mathfrak{p}}(\xi); \xi) \cdot t^{\dim(\mathfrak{f})} \cdot e^{t\langle \xi, \mathfrak{f} \rangle}.$$

Exponential sums over families of polytopes

- Brion's formula tells us that if ξ is generic and \mathfrak{p} is lattice polytope then ($t \in \mathbb{N}$)

$$S_{\Lambda}(t \cdot \mathfrak{p}; \xi) = \sum_{\mathfrak{v} \in \text{Vert}(\mathfrak{p})} S_{\Lambda}({}^0 \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi) \cdot e^{t \langle \xi, \mathfrak{v} \rangle}.$$

Exponential sums over families of polytopes

- Brion's formula tells us that if ξ is generic and \mathfrak{p} is lattice polytope then ($t \in \mathbb{N}$)

$$S_{\Lambda}(t \cdot \mathfrak{p}; \xi) = \sum_{\mathfrak{v} \in \text{Vert}(\mathfrak{p})} S_{\Lambda}({}^0 \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi) \cdot e^{t \langle \xi, \mathfrak{v} \rangle}.$$

- If $\xi = 0$, then

$$S_{\Lambda}(t \cdot \mathfrak{p}; \xi) = \text{Ehrhart quasi-polynomial.}$$

Exponential sums over families of polytopes

- Brion's formula tells us that if ξ is generic and \mathfrak{p} is lattice polytope then ($t \in \mathbb{N}$)

$$S_{\Lambda}(t \cdot \mathfrak{p}; \xi) = \sum_{\mathfrak{v} \in \text{Vert}(\mathfrak{p})} S_{\Lambda}({}^0 \mathfrak{s}_{\mathfrak{v}}^{\mathfrak{p}}; \xi) \cdot e^{t \langle \xi, \mathfrak{v} \rangle}.$$

- If $\xi = 0$, then

$$S_{\Lambda}(t \cdot \mathfrak{p}; \xi) = \text{Ehrhart quasi-polynomial.}$$

- Degenerate Brion's formula tells us

$$S_{\Lambda}(t \cdot \mathfrak{p}; \xi) = \begin{array}{l} \text{explicit sum of terms of the form} \\ \text{quasi-polynomial} \times \text{exponential} \end{array}$$

A view towards applications

- Exponential integrals over polyhedra show up in analysis on *symmetric spaces*.

A view towards applications

- Exponential integrals over polyhedra show up in analysis on *symmetric spaces*.
- Exponential sums over lattice points in polyhedra show up in analysis on *Bruhat-Tits buildings*.

A view towards applications

- Exponential integrals over polyhedra show up in analysis on *symmetric spaces*.
- Exponential sums over lattice points in polyhedra show up in analysis on *Bruhat-Tits buildings*.
- Degenerate Brion's formula plays the role of Laplace's method/stationary phase.

A view towards applications

- Exponential integrals over polyhedra show up in analysis on *symmetric spaces*.
- Exponential sums over lattice points in polyhedra show up in analysis on *Bruhat-Tits buildings*.
- Degenerate Brion's formula plays the role of Laplace's method/stationary phase.

