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ABSTRACT. We prove that for almost all symmetric spaces X and for any sequence of
compact locally symmetric spaces Y, which is uniformly discrete, has a uniform spectral
gap, and converges in the sense of Benjamini—-Schramm to X, the joint eigenfunctions of all
invariant differential operators on Y,, delocalize on average when their spectral parameters
are taken to lie in a fixed spectral window.
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1. INTRODUCTION

The celebrated Quantum Ergodicity theorem of Snirelman [Sni74], Zelditch [Zel87], and
Colin de Verdiere [Ver85] states that, on a closed Riemannian manifold Y whose geodesic
flow is ergodic, the L?-mass of almost every Laplacian eigenfunction equidistributes in the
limit of high frequency. This is an early example of the transference principle in semiclassical
analysis, whereby high-energy Laplacian eigenfunctions inherit the dynamical properties of
the underlying Hamiltonian system, in this case given by the geodesic flow.

More precisely, let {¢;} be an orthonormal basis of L?(Y") consisting of eigenfunctions of
the Laplacian. We write Ay, = ,u?wj, where p; > 0 is the frequency, and N(M) = #{j :
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pj < M}. Quantum Ergodicity affirms that, for any a € C(Y),
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In fact, the aforementioned authors proved a stronger version of the above statement in which
the multiplication operator a is replaced with more general pseudodifferential operators.

An analog of Snirelman’s theorem can be posed in the setting of locally symmetric spaces
of non-compact type, which form a subclass of Riemannian manifolds of central interest in
automorphic forms and harmonic analysis. To do so effectively, one must take into account
the extra symmetries enjoyed by these spaces. Indeed, Snirelman’s theorem does not al-
ways directly apply, since the geodesic flow on the cosphere bundle of a locally symmetric
space Y is ergodic only in rank 1. Nevertheless, the Weyl chamber flow can serve as a suit-
able substitute: if r is the rank of Y, the Weyl chamber flow is an R"-action on the Weyl
chamber bundle, whose orbits descend to immersed maximal flat subspaces of Y, the higher
rank analog of geodesics. This action is ergodic with respect to the uniform measure, and
its quantization yields a rank r algebra of commuting differential operators containing the
Laplacian. One can then ask for the quantum ergodic properties of the joint eigenfunctions
for this algebra as the multispectra goes to infinity, a point of view first advanced in [SVO7].

In this paper we shall investigate quantum ergodicity for locally symmetric spaces Y under
a different limiting procedure to that described above. Following the breakthrough results
of [ALM15; LMS17], rather than fixing a single space Y and varying the multispectra, we
shall prove a version of quantum ergodicity for a fixed spectral window and a sequence of
locally symmetric spaces Y,, = I',\ X which converge, in the sense of Benjamini-Schramm,
to their common universal cover X. In so doing we will correct a significant error in the
earlier work of the first and third authors [BM23], in which X was taken to have isometry
group SL,(R), and greatly expand the scope of that paper. The precise result is stated in
Theorem 1.1 below.

The proof of our main theorem requires the introduction of several new techniques and
auxiliary estimates, both in harmonic analysis (bounds on spherical functions) and the geom-
etry of higher rank symmetric spaces (bounds on intersection translates), which we believe
to be of general interest. These results, and their role in the proof of Theorem 1.1, are
discussed in detail in Section 2.

2
=0.

1.1. Review of literature: the rank one case. The framework for studying quantum
ergodicity in the Benjamini—-Schramm limit originates in the work of Anantharaman—Le
Masson [ALM15] in the context of regular graphs. They considered sequences of (¢ 4 1)-
regular graphs for which the adjacency operator (the discrete analogue of the Laplacian)
has a uniform spectral gap and for which the number of short loops is small compared
to the number of vertices; the latter condition is equivalent to the Benjamini—Schramm
convergence of the sequence of graphs to the (¢ + 1)-regular tree. They proved a form of
quantum ergodicity for eigenfunctions of the adjacency operator with eigenvalue lying in
some subinterval of [-2,/g,2,/q], which is the spectrum of the adjacency operator acting on
the (¢ + 1)-regular tree.

Analogous results were proven for hyperbolic surfaces by Le Masson—Sahlsten [LMS17],
building on work of Brooks-Le Masson-Lindenstrauss [BLML16], the latter of which gave a

new proof of the result of Anantharaman—-Le Masson [ALM15]. Such results were extended to
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all rank one locally symmetric spaces by Abert—Bergeron—Le Masson [ABM22]. Furthermore,
Anantharaman—Sabri [AS19] proved analogous results in the context of arbitrary graphs.

1.2. Our main result. Let us recall some notation related to locally symmetric spaces,
which will be necessary to state our main result.

Let G be a connected non-compact semisimple Lie group with finite center and K < G a
maximal compact subgroup. Let g and € be their respective Lie algebras. Then K induces a
Cartan involution with corresponding eigenspace decomposition g = p & €. We endow X =
G/K with the G-invariant metric coming from the Killing form, making X a Riemannian
symmetric space. All groups isogenous to G yield the same symmetric space. Thus we may
assume without loss of generality that GG is a product of non-compact centerless connected
simple real Lie groups.

Let I' < G be an irreducible lattice, which we shall assume to be uniform throughout this
paper. Then Y = I'\ X is a compact locally symmetric space. We endow Y with the measure
dx induced from the Riemannian volume form on X. Let Dg(X) be the ring of G-invariant
differential operators on X. The action of Dg(X) descends to functions on Y, and the joint
eigenfunctions of Dg(X) in L*(Y) are called Maass forms. A Maass form determines an
eigencharacter of Dg(X), which can then be identified with a spectral parameter A € ai./W
by the Harish-Chandra isomorphism. Here a is a maximal abelian subspace of p, ac is its
complexification, and W is the Weyl group of G. A Maass form is said to be tempered when
its spectral parameter lies in a* /W, the latter being identified with the Dg(X)-spectrum
on L?(X). For example, when X = H" is hyperbolic n-space and Y = T'\H" is a compact
hyperbolic manifold, a Maass form 1 is just a Laplacian eigenfunction Ay = p21), and if we
write the eigenvalue as p? = p* + A%, with p = (n — 1)/2, then the tempered case A € R
corresponds to u? > p?.

We shall be interested in the L?-mass distribution of Maass forms, when their spectral
parameters are confined to a compact subset of a*/WW and the lattice I' < G is allowed to
vary. A sequence of locally symmetric spaces Y,, = I',\ X as above is said to converge to X,
in the sense of Benjamini—Schramm, if asymptotically almost all points in Y,, have arbitrarily
large injectivity radius. Moreover, if the I',, are torsion free, we say that the sequence I';, < G
is uniformly discrete if there is a universal lower bound on the global injectivity radii of Y,,.

With the above notation, our main theorem is the following.

Theorem 1.1. Let G be a product of mon-compact connected centerless simple real Lie
groups, K be a mazimal compact subgroup, and X = G/K be the associated symmetric
space. Let T, < G be a sequence of torsion free, cocompact, uniformly discrete, irreducible
lattices. Suppose Y, = I';,\ X Benjamini—Schramm converges to X as n — oo. Fiz a simple
factor Gy of G and suppose that

(1) its root subsystem of reduced roots is of type A, By, Cy, D,, or Ex,
(2) the action of Gy on the orthocomplement L3(T,\G) to the constant functions has a
uniform spectral gap.

There exists a finite W -stable set of hyperplanes { P;} in a* such that, for any compact W -
mwvariant subset ) C a* \U; P; with non-empty interior, the following holds. Let {w](-n)} be an

orthonormal basis of L*(Y,) consisting of Maass forms with associated spectral parameters

(n) - _ .y (n) ,
A7, and write N(S,T,) = #{j : ;" € Qg Then for any uniformly bounded sequence



a, € L*>(Y,) we have
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In particular, the theorem holds for a non-compact simple Lie group G of rank at least 2
satisfying (1) and any uniformly discrete sequence of cocompact torsion free lattices I';, < G
such that vol(Y,,) — oco. Indeed, in such a setting the uniform spectral gap assumption (2)
is automatic by Property (T), and the Benjamini-Schramm convergence of Y,, = I',\ X to
X is automatic by [ABB+17, Theorem 1.5].

The exceptional hyperplanes U; P; in the statement of Theorem 1.1 can be taken to depend
only on the root system of GG. In particular, when the root subsystem of reduced roots for
G is of type A,, B,, or C,, Theorem 1.1 holds with €2 a compact subset of the regular
parameters a,,. See Section 4, and, in particular, Propositions 4.3 and 4.7, for a more
complete description of the U; P;.

The exclusion of types Fg, Fg, Fy and G5 from the theorem results from a certain combi-
natorial property of the root system not holding in these types (see Section 7). There are
precisely eight simple groups/irreducible symmetric spaces excluded from our theorem. In
the notation of [HelO1, p. 532] these are the groups

EIEIIEIIEVI,EVII,EIX,FI, and G.

Despite the failure of our techniques to treat such spaces, we believe Theorem 1.1 should
remain valid for them.

1.3. Review of literature: higher rank case. The first investigation of quantum ergod-
icity in the Benjamini-Schramm limit in higher rank can be found in the work of the first
and third authors [BM23] who focused on locally symmetric spaces associated to SL,(R).
At a certain step in the proof, which we refer to as the geometric bound, they must bound
the volume of a certain set in the symmetric space. A mistake in the geometric bound was
found by the fourth author as part of his thesis work [Pet23a]. This mistake resulted in a
gap in the proof of the main theorem of [BM23].

By modifying the techniques of [BM23], particularly those related to the geometric bound,
the fourth author proved quantum ergodicity in the Benjamini—Schramm limit for the group
PGLj3 over a non-archimedean local field, in which case the role of the symmetric space is
replaced by that of the Bruhat-Tits building, and the invariant differential operators are
replaced by the spherical Hecke algbera [Pet23b]. In Section 2.2 we shall say more about the
mistake in the geometric bound of [BM23], the method of “fixing” it for non-archimedean
PGL;3 in [Pet23b], and how these ideas play a role in the present paper.

1.4. Acknowledgements. We would like to thank Jean-Philippe Anker, particularly for
his contributions to Section 6.1 and 6.2.

2. SKETCH OF PROOF AND MAIN TECHNICAL THEOREMS

The overall strategy of the proof of Theorem 1.1 follows the argument of Le Masson—
Sahlsten [LMS17], which itself derives from [BLML16]. The subsequent works of [ABM22],
[BM23], [Pet23a] all followed the same basic structure, with additional difficulties depending

on the given context (higher dimensional hyperbolic, higher rank real and p-adic). The
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main purpose of the present discussion is to recall the various steps of the argument which
are common to the above works, point to the specific section in this paper where they are
executed, and describe in detail the formidable geometric and analytic challenges special to
our higher rank setting.

Our two main auxiliary results which surmount these difficulties are stated in Sections 2.2
and 2.3 below. Of these, the primary result is stated in Theorem 2.2; it provides sharp (up to
logarithmic powers) upper bounds on intersection volumes of spherical shells in the globally
symmetric space X, and addresses the issue raised in §1.3. We prove this geometric bound
using harmonic analysis. For this, we prove new uniform bounds on spherical functions in
Theorem 2.3, which provides the central ingredient to our analytic approach.

To simplify the exposition, we shall assume throughout Section 2 that G is simple.

2.1. Spectral and geometric reduction steps. The basic strategy to the proof of Theo-
rem 1.1 is to introduce an averaging operator over expanding bi- K-invariant sets Siy, C G
to convert the distributional properties the L2-mass of Maass forms into the mean ergodic
properties of the Siy, (or their intersection translates).

Reduction to mean-zero observables. We begin by observing that it is enough to prove
Theorem 1.1 for the class of observables which are orthogonal to constants. Indeed, if a,, is

as in the theorem, then so is a,, — ) Y fY an, SO we may assume, without loss of generality,

that fYn a, = 0. In this case the proof of Theorem 1.1 reduces to showing

(1) Z { an¢(n n) ’ 0
A(”)GQ

as n — oQ.

Spectral properties of the propagator (Section 4). In Section 4, we introduce the
aforementioned expanding bi- K-invariant sets Sy, in G. More precisely, given a non-zero
Hy € a, and real parameters ¢, ey > 0, define the spherical shell directed by Hy by

StHo = KeXp(Ba(tH[)) 60))K7

where B,(H,r) denotes the Euclidean ball in a of radius 7 > 0 centered at H € a. We may
associate with S;p, its averaging operator U; on L*(T'\G), and we denote the corresponding
self-adjoint time average by A(7). The latter is an integral operator with kernel given by

Zver A(g,~vh), where

1 2T
(2) A(T)(g,h) = —/ €2tp(H°)/ a(x)dzdt.
TJr Serg NSt

The primary goal of Section 4 is then to prove that one can essentially replace the matrix
coefficient (aw);, ;) in the spectral average (1) by the matrix coefficient (A (7)1, ;).

This indeed is the content of Theorem 4.1, which is valid in a wide degree of generality.
Since Theorem 4.1 is essentially local in nature, no assumptions on I are necessary. Moreover,
the non-zero directing element H, can be taken to be arbitrary, provided one restricts to
spectral parameters avoiding the exceptional hyperplanes {P;} figuring in the statement of
Theorem 1.1. To be precise, these exceptional hyperplanes arise in the proof of Proposition
4.6, and depend on H, through the set af_,, defined in (31).
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Reduction to the intersection volume bound (Section 5). The outcome of Section
4 is to reduce Theorem 1.1 to a similar estimate on the Hilbert—Schmidt norm ||A(7)||us.
We study the latter by realizing it as the L?-norm of its kernel. We state in Theorem 5.1
the ultimate bound we prove on ||A(7)||us, which involves various geometric and spectral
quantities controlled by the hypotheses in Theorem 1.1. We then show, using known Limit
Multiplicity theorems recalled in §3.8, how Theorem 5.1 suffices to deduce Theorem 1.1.

As is evident from (2), the Hilbert—Schmidt norm of the operator A(7) encodes the dy-
namical properties of the intersection of the spherical shells S;y, with their group translates.
The most difficult step in the proof of Theorem 5.1 is to bound the volume of these intersec-
tions, a task we accomplish in Theorem 2.2 below. The bulk of Section 5 is then dedicated
to the reduction of Theorem 5.1 to Theorem 2.2.

This reduction proceeds by bounding ||A(7)||lus by means of a thick-thin decomposition
of the locally symmetric space Y = I'\G/K. This resulting bound produces a main term,
denoted as M(7) and defined in (44), and an error term, occuring in Lemma 5.2. The error
term involves the volume of the thin part and the global injectivity radius of Y, as well as the
support of the kernel function (2). The former are controlled by the hypotheses of Theorem
5.1 while the latter is determined in Corollary 5.5.

The analysis of the the main term M (7) is much more delicate. In Proposition 5.8 we use
the Minkowski integral inequality and the Nevo ergodic theorem to set up an application of
Theorem 2.2. Once this is inserted, we execute in §5.4 one last integral using a degenerate
form of Brion’s formula to conclude the proof of Theorem 5.1.

2.2. Bounds on intersection volumes (Sections 6-9). It then remains to bound the
volumes of intersection translates of expanding spherical shells. For this, we wish to find
an Hy such that for all H € a and ¢ > 1, the volume of the intersection e Sy, N Six, is
“small”, in a suitable sense. We are able to do so for all non-compact simple groups satisfying
condition (1) of Theorem 1.1, as we now describe.

Denote by ® the set of restricted roots for A in G and by ®,,q C P the subsystem of
reduced roots (also known as indivisible roots). Let M be the centralizer of Hy in G; then
M is a standard Levi subgroup of G. Let ®3; C ® be the roots of A in M, and ®p/req C Pred
the corresponding subsystem of reduced roots.

If 3 is an abstract reduced root system, in Section 7 we define a notion of a semistandard
root subsystem ¥ being semi-dense in ¥; roughly speaking this means that for any semi-
standard root subsystem ¥ C X, ¥, contains at least half the roots of . In case ®,q is
of type A,,, B,,C,, D, or E;, we define certain Hy, which we call extremally singular which
have the property that @,/ ,eq is semi-dense in ®eq.

The following result summarizes the content of Proposition 7.5 and Lemmas 7.7-7.8.

Proposition 2.1.

(1) An irreducible reduced root system ¥ contains a semi-dense root subsystem if, and
only if, ¥ is of type A,, B,,,Cy, D,, or Ex.

(2) Let G be such that ®req is of type A, Bn,Cy, D, or E; and let Hy be extremally
singular. Then ®prreq 15 a semi-dense root subsystem of Preq.

The volume of Sy, is asymptotically of size e2*(0) where p is the half-sum of the positive

roots. Moreover, as we shall see in Section 5.2, the spherical shell S;y, and its translate

e S;p,, where H € @, do not intersect as soon as p(H) > tp(Hy — woHy) = 2tp(Hy). The
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following bound interpolates between these two extremities, losing only a logarithmic factor
of t.

Theorem 2.2. Let G be a non-compact simple real Lie group. If Hy € ay is such that @y req
is semi-dense in ®eq, then there exists a non-negative integer k such that for all H € a,
and t > 1:

(3) Vol(eHStH0 N Sig,) < (log t)kep(%Ho—H)_

One may obtain such a bound in a straightforward way and for all choices of H, at the
cost of replacing the (logt)* factor by a polynomial in t. The fact that we have logt factors
rather than polynomial factors in ¢ is critical in the proof, as is explained in Section 6.1.

In [BM23], the first and third authors needed to bound a similar quantity as the LHS of
(3), but for a choice of Hy which was not extremally singular. They claimed a bound like the
RHS but with the (log?)* factor replaced by a constant. However, the fourth author found
a mistake in their argument and was able to show that, in the non-archimedean setting for
PGL3(F') and for the choice of Hy from [BM23] and specific choices of H, we have

VOl(WHStHO N Sir,) > tqp(%HO*H),

where F is a non-archimedean local field, @ is the image of a uniformizer w under the
dominant cocharacter H : F* — A (with A a maximal F-split torus), O is the ring of
integers, ¢ is the order of the residue field, and Sy, = PGL3(O)@PGL3(O). However,
if one takes an extremally singular Hy, one obtains vol(w! Sy, N Sip,) < ¢?PHo~H); see
[Pet23a]. This suggests that in the archimedean setting we should not expect (3) to hold for
generic choices of H.

2.3. Bounds for spherical functions (Section 9). The proof of Theorem 2.2 relies cru-
cially on a new bound for the spherical function. As this bound holds on a general semisimple
group, and may be of independent interest, we shall state and prove it independently of The-
orem 1.1 and Theorem 2.2.

Let G be any noncompact semisimple Lie group with finite center. We let ) denote the
spherical function on G' with spectral parameter A € af. See §3.4 for definitions. To state
our bound, we first define

fo(H, A) := min(|a(H)| + 1, |\, )|t + 1),

where o € @ | H € a, and )\ € af. We subsequently define

(4) OHN) ==Y [ falH wh).

weW ae(bj;d

Note that © is W-invariant in both A and H, and also satisfies ©(H,\) > 1. Let a*(k)
denote those elements in ai. whose imaginary part is bounded in size by k.

Theorem 2.3. There are a,k > 0 such that the following holds. For oll H € ay and all
A € a*(k), we have

oa(e") < (14 [IA)*O(H, A)max e~ (7r3hE),
7



We shall prove Theorem 2.3 in Section 9. To aid the reader in understanding the statement
of the theorem, in Section 9.1 we shall illustrate it in the case of SLy(C) and SL(2,R), as well
as deriving some simpler consequences of it in general. Section 9.2 also contains a discussion
of the relation between Theorem 2.3 and previous bounds for the spherical function.

When G is a complex group, Theorem 2.3 has an interesting ‘self-improving’ property
which allows us to significantly strengthen it, subject to the condition that A lies in a*. In
particular, we expect this bound to be sharp in all aspects subject to this tempered condition
on A. Moreover, this bound may be transferred to the Cartan motion group corresponding
to GG, using the well known link between the Cartan motion group and the semisimple group
in the complex case, and we shall state it for both groups simultaneously.

The Cartan motion group associated to G is the semidirect product p x K, which acts
on the Euclidean symmetric space p. For A € af, we have the Euclidean spherical function
©¥ € C*>(p) (also known as the generalized Bessel function) defined by

(5) o(7) = / PN 7 p,
K

where we have extended A to an element of p* by orthogonality. To recall the relationship
between ¥ and ¢y, we let Q be the function defined on a by

Q(H) = ] sinh(a(H))/a(H).

acdt

As @ is Weyl invariant, it extends to a function on p, which is equal to the Jacobian of the
exponential map exp : p — G /K. We then have

pr(e?) = CQ(2) 2P (2)

for some constant C' > 0, see for instance Ch. IV, Theorem 4.7 of [Hel00]. Our bounds for
oy and ¥ are as follows.

Theorem 2.4. Suppose that G is a complex group. Then for H € a, and A\ € a*, we have

(6) o (H) < Y [T A+ la(E)(wAa)) ",

weW aed+

(7) pale!) < e T (e +1) Y T @+ laH) (wA, o))~

acdt weW aed+
We note that
QH)™? < e TT (Ja(H)| +1)

acdt

for H € a,, so that the bounds (6) and (7) are equivalent. In Section 9.1 we explain why
we expect Theorem 2.4 to be sharp based on an analysis of the oscillatory integral (5), and
in Section 9.2 we discuss the relation between Theorem 2.4 and previous bounds for the
spherical function on complex groups. We deduce Theorem 2.4 from Theorem 2.3 in Section

9.7.
8



3. PRELIMINARIES

In this section we introduce most of the notation that will be in force throughout the
rest of the paper, and recall some of the definitions and foundational results that enter into
the statement and proof of Theorem 1.1. More exactly, after setting up some standard
notational conventions in §§3.1-3.4, we give standard bounds on the c-function and state
the Harish-Chandra expansion in §3.5, we define mazimally singular and extremally singular
elements in §3.6, and we state the pertinent formulation of Benjamini—Schramm convergence
in §3.7. Finally, in §§3.8-3.9 we recall the relevant limit multiplicity theorems and the notion
of uniform spectral gap.

Throughout this section we shall let G denote a connected semisimple real Lie group with
finite center and no compact factors. Additional hypotheses on G (such as those appearing
in Theorem 1.1) will be assumed later in the paper as needed.

3.1. Basic notation. Fix a maximal compact subgroup K of G. Denote by ¢ and g their
respective Lie algebras. Then K induces a Cartan involution © on G. The differential at
the identity of © defines an involution on g, whose —1 and +1 eigenspaces determine the
Cartan decomposition g = p & €.

Let a C p denote a maximal abelian subspace. Let A = exp(a) be the corresponding
analytic subgroup of G. Let a* denote the dual space of a. Let ® C a* be the set of restricted
roots. Let ®* C ® be a choice of positive roots. We let A C <I>+Adenote the set of simple
roots; they form a basis for a*. Then the fundamental coweights AV = {w) : « € A} Ca
denote the dual basis to the simple roots, giving rise to decompositions A = Y\ A(@y)a,
H =73 ra(H)w) of elements A € a* and H € a. Let

a, ={Hca:a(H)>0VacA} =) R w,
acA
be the fundamental Weyl chamber in a and denote by a; =) . R>ow,, its closure.
We have a restricted root space decomposition

g=mead Y g
acd

where m = Z;(a) is the centralizer of a in £ and g, is the root space for a. As usual, we let
p = %Za€¢+ mea be the half-sum of the positive roots, where we have put m, = dim g,.
Let r = dima be the rank of G and W = Ng(a)/Zk(a) the Weyl group of G. Let ®oq
denote the set of reduced roots of ®, i.e., roots a such that «/2 is not also a root. Then
®,oq is a reduced root system, and we refer to it as the reduced root system of G. Let
L = Da NPT, Note that A is also a base for @,eq.

We let (-, -) denote the restriction of the Killing form to a. We equip a* with the inner
product («, 8) = (H,, Hz), where H, € a is uniquely determined by o(Z) = (H,, Z). For
any non-zero o € a*, we may then define the orthogonal reflection A — \ — 229 1 across

(@)
)

the root hyperplane a. Note that A — 2 () is an element in a**, and as such determines

an element o" € a such that 283 = AMa"). Then the orthogonal reflection can be written

A= A — AaY)a and hence at = {\ € a* : \(a¥) = 0}.
Denote the set of (restricted) coroots and simple coroots by ®¥ = {a" : a € ®} C a and

AY = {aY : a € A} C a, respectively. Then the fundamental weights A = {w, : a € A} C
9




a* form the dual basis to the simple coroots AY. We have corresponding decompositions
A= peaMa)we, H="73" A wa(H)a" of elements A € a* and H € a. Let

al ={Ae€a*:\a) >0Va€A}:ZR>Owa
€A

be the fundamental Weyl chamber in a* and denote by a} =)\ Rxow, its closure. We

acA
write
(8) e = |J {A € 0" M”) =0}
aedt
for the union of all root hyperplanes and put aj,, = a* \ a§,,. Then a;,, = W.a’. Finally,

we write af := a* @ C for the complexification of a*.

3.2. Subsets of simple roots and associated structures. Let n = @ae¢+ go and write
N = exp(n) for the corresponding analytic subgroup. Let P = Zx(a)AN be the standard
minimal parabolic subgroup. The Bruhat decomposition tells us that

G= || PwP,

weW

where we choose any coset representative for w € W = Ng(a)/Zk(a).

Any subgroup of G containing P is called a standard parabolic subgroup. These can be
constructed in the following way. Let I C A, and let W be the subgroup of W generated
by the reflections associated to a € I; we define Wj = 1. All standard parabolic subgroups
are of the form

Qr= || PwP

weWr

for some I C A [Hum?75, §§29.2-3]. This recovers the Bruhat decomposition for G when
I =A.

Let ®; be the root subsystem whose elements consist of roots in ® which are linear
combinations of roots in I. Let ®] = ®; N ®T. Note that the roots of Q; with respect to A
are T U (—®}) = (®T \ @) U ®; [Hum?75, §30.1, Theorem (b)]. Since W; preserves these
roots, and it preserves ®;, we immediately see that W preserves @ ~\ ®}. The following
proposition relates ®; with the action of W; on ®.

Proposition 3.1. Let I C A. Then

9) Wr={weW|wdt C(dt &)U P/}

In particular, w(®T \ ®F) = &F \ ®F if and only if w € Wr. Furthermore,
(10) OF ={a € d" | TJweW;: wa <0},

PN D7 ={a € P | wa>0Vw e W;}.

Proof. The direct inclusion in (9) holds, since W; preserves the roots of @);. On the other
hand, if w € W is such that w®*™ C & U (—®]), then w maps P into Q; and therefore

belongs to @ by [Hum?75, §29.3, Lemma D] so that w € Q; NW = W7.
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To see that Wy consists precisely of those w € W for which w(® \ ®7) = &+ \ & we
first observe that since W; preserves ®; and (&1~ CID}L) U ®;, it must also preserve &1 ~ CID}“.
Next, taking complements in (9) gives

Wr={weW|—(®t\®)) Cw(-dN)}={weW |w (T o)) C o'},

so that w(®T \ &F) = &+ \ & implies w € W; as required.

The two statements in (10) are clearly equivalent so that it suffices to prove the second.
The direct inclusion follows from the fact that 1, preserves ®* \ ®7. On the other hand,
suppose @ € &7 is such that wa > 0 for all w € W;. It suffices to show that W;a C @7\ @7,
since this implies, by the preceding claim, that a € & \ ®}. Now (9) already yields the
inclusion Wra C (@7 \ ®7) U ®;. But Wra has no intersection with ®;. Indeed, every
element in W« is positive while the Wi-orbit of every element in ®; meets —®™, since ®; is
a root system with Weyl group Wj. O

Standard parabolic subgroups ) = ); admit a Levi decomposition
Q=LxU (L=0Qn06(Q)),

where U is the unipotent radical of ), whose Lie algebra is @a€¢+\¢1+ Oo- (When I =0,

we have ) = P and U = N.) The reductive subgroup L, whose Lie algebra decomposes as
admod ®ae®1 ga, is called the Levi component of Q); by standard Levi subgroup we shall
mean any Levi component of a standard parabolic subgroup. The Weyl group of L, relative
to the maximal compact subgroup Ky = K N L, and maximal split torus A C L, is equal to
Wy [Hum75, §27.1, Theorem].

The Levi component Lj itself determines the standard parabolic subgroup ¢);. Moreover,
we may identify L; as the centralizer of any element in the open cone C; =3 A ;Roow],
and all standard Levi subgroups are obtained in this way [Hum75, §30.2]. The nodes of the
Dynkin diagram of ® are also naturally labeled by elements in A. We thus have one-to-one
correspondences between subsets I C A, standard Levi subgroups L;, standard parabolics
@7, faces Cf of a,, and subdiagrams of the Dynkin diagram for ® obtained by deleting the
nodes corresponding to A\ /. In this last correspondence, the type of the resulting Dynkin
diagram in fact tells us the type of the root system ;.

3.3. Measures and Jacobian factors. Let X = G/K be the Riemannian globally sym-
metric space associated to G. Let B denote the Killing form on g. Then B is positive definite
on p and hence defines an inner product on p. Identifying p with the tangent space of X at
the origin, we then transport this inner product to a G-invariant Riemannian metric on X,
of non-positive curvature. The restriction of B to a defines a W-invariant inner product. Let
dH denote the corresponding Lebesgue measure on a. Let dk denote the probability Haar
measure on K. We normalize Haar measure dg on G in such a way that its quotient by dk
agrees with the measure dx induced by the Riemannian volume form on X. If E is a subset
of G or X = G/K, we write vol(E) for [, dg or [, dx, respectively.

The Cartan decomposition states that G = K exp(a,.)K. Correspondingly, there is a
constant b > 0 such that, for every f € C.(G), we have

(11) /f dg—bg//a+/fk:1exp Vo) J(H ) dkydH dks,



where, for H € a,, the radial volume factor J € C*(a,) is given by

(12) J(H) = ] (sinha(H))™

acdt

See [GV8S, §2.4, Prop. 2.4.11]. By extending to a,e, by W-invariance, and then by continuity
from a,e, to a, we may also view J(H) as a continuous W-invariant function on a.

More generally, we let L = L; be a standard Levi subgroup, where I is the corresponding
subset of A, as in the bijective correspondence of §3.2. Denote by W = W; its Weyl group.
Let &7, = ®;, and &) = &, N d+. We let

(13) ar+={Heca:a(H)>0Vacl}

be the fundamental Weyl chamber for L. We again give K the probability Haar measure
dk, and we denote by dl the Haar measure on L, normalized in the same way as for G.
The Cartan decomposition for L states that L = K exp(ay )K. Once again, there is a
constant by > 0, depending only on L, such that

(14) / F)dl =1, /K / [ o expli k) o (1D

where the radial volume factor with respect to L is

(15) Jo(H) = [] (sinha(H))™.

+
acdy

We define JX' = J/Jp.

3.4. Spherical functions, spherical transform, spherical inversion. The Iwasawa de-
composition for G states that the multiplication map N x A x K — G is a diffeomorphism.
Let H : G — a be the Iwasawa projection, given by g = nexp(#(g))k. For A € af the map
g — e?9) descends to a plane wave on X. The average over left- K-orbits

(16) ox(g) = / (AP (kD)) g,
K

defines a bi-K-invariant function called the spherical function with spectral parameter \;
such functions can also be viewed as K-invariant functions on X. The spherical functions
are in fact distinguished by the properties of equalling 1 at the identity, being bi- K-invariant,
and being joint eigenfunctions of all G-invariant differential operators on X, denoted D¢ (X).
More precisely, the Harish-Chandra isomorphism gives an isomorphism
YHC Il)G()<>';:$ Syrn(aC)M/

onto the W-invariant elements of the symmetric algebra of a¢, which we may in turn interpret
as W-invariant polynomials on ag. We have that

Dy = vuac(D)(A)pa

for all D € Dg(X). We have v, = @y if and only if A and A are in the same W-orbit.
For this reason, we call af/W the space of spectral parameters. The spectral parameters
lying in a* /W are called tempered spectral parameters. The tempered subspace a*/W arises

naturally in the decomposition of L?(X), as will be seen in the following subsection.
12



The group L has its own Iwasawa decomposition L = N, AK; where Ny is the analytic
subgroup corresponding to @a@f go- We can thus in turn define the spherical function ¢¥
on L by the formula (16), replacing p with p; = %Zaeﬂb{ mao. Then % = pf, if and only
if A and )\ are in the same WWp-orbit.

Let C°(GJK) denote the space of compactly supported smooth bi- K-invariant functions.
Given k € C* (G K) let

a7) FO) = [ Kodoa(oddg =ba [ keMoosleIH)AH

be the Harish-Chandra spherical transform. This transform can be inverted using the Harish-
Chandra c-function ¢(\), which is a meromorphic function on A € af, given by the product

(18) e =c [] Ca(@,’z;)’ o (s) = 27°T(s)

e F(%(%ma +1 +s))F(%(%ma—|—m2a+s))’

for a non-zero constant C'. Then we have the following inversion formula:

Ke) = [ Fa(@leO) i
ol

More generally, for a standard Levi subgroup L, we let ¢, be its c-function, given by the
product (18) but with @ replaced by @, ;.

3.5. Bounds on the c-function and the spherical function. In this section we recall
standard bounds on the c-function that will be used throughout the later sections and state
the generalized Harish-Chandra expansion of the spherical function, a result which undergirds
the proof of Theorem 2.3.

From its definition in (18) it is clear that each function ¢,(s) has a simple pole at s = 0.
Therefore, for A close to zero, we have

(19) e < [T 1)l

+
acd’

On the other hand, if s is large with real part bounded by r, we have that [DKV79]
(20) |Ca(5)|_2 <k |3|ma+m2a‘

Let L be a standard Levi subgroup of G. From the expression (18) it follows that c¢()) is

holomorphic and non-vanishing on the regular parameters ay,,. Then the quotient

(21) cL(\) = || CQ(W’@) (Ct = /oy,

aeq);d\q);d,L <O./, OZ>

is holomorphic and non-vanishing on

(22) o~ | {pea:ae) =0}
a6<1>+\<1>z
13



*

an open set in a* containing ay.,. The main term in the generalized Harish-Chandra expan-
sion, stated below, will be seen to be

(23) OL(HN) == Y cHwN)phi(e),
weWr\W

and the error term is governed by the function 51 : @ — R given by

(24) Bo(H):= min |a(H)|.

046<I>+\<I>zr

Note that 0, (H, \) is defined on a

reg”

Proposition 3.2 (Generalized Harish-Chandra expansion; Theorem 5.9.4 of [GV88]). Let
e > 0. There exist constants C > 0 and s > 0 such that for all A € aj,, and for all H € a,
such that Br(H) > e, we have

e Mipr () — e oL (H,N)| < O(L+ AL+ | H])*e 2,

We shall discuss an extension of this result to a small tube about the tempered subspace
a* in Proposition 9.3. In case L = Zg(a)A, so that L is the unique minimal standard
Levi, we have that p;, = 0, and ¢¥(efl) = ). The formula then reduces to the classical
Harish-Chandra expansion.

3.6. Maximally singular and extremally singular elements. An element Hy € a, is
called called singular if Hy € a, ~ a,. Non-zero elements lying on the one-dimensional
faces of the polyhedral cone a, are the most singular among all non-zero elements and shall
be called mazimally singular. The fundamental coweights give a conical basis for a,, so
the maximally singular elements are simply the positive multiples of fundamental coweights.
The fundamental coweights correspond bijectively with the nodes of the Dynkin diagram.

Among the maximally singular elements in a, we would now like to isolate a subclass
which enjoys certain extremal properties. We will only be able to find such a nice class in
types A,, B,, C,, D,, and FE7, so for the rest of this subsection we shall assume that ®,.4
is of one of these types. We say that Hy € a, is extremally singular (or extremal) if Hy
is equal to a positive multiple of an extremal fundamental coweight. The latter are defined
via the following table, which identifies the node (or nodes) of the Dynkin diagram of ®,.q
which corresponds to the extremal fundamental coweights:

type of ®,eq | extremal nodes o | type of @y red

A, (n > 1) e—o——o—e A,
Bn (TL > 2) —0——0—0==0 Bn,1
Cn (n > 3) —0——0—0=0 Cn,1
D, (n > 4) oo Dy

TABLE 1. Darkened nodes correspond to extremal fundamental coweights

14



For the infinite families A,, B,,C,, D,, the extremal nodes are the ones that you can
remove from the Dynkin diagram to obtain a Dynkin diagram in the same infinite family
but of rank one less (with the conventions By = Ay, Cy = By, D3 = Aj3).

3.7. Benjamini—Schramm convergence. A lattice I' < G is a discrete subgroup of finite
covolume. The lattice I' is said to be uniform if Y is compact and irreducible if the projection
of I' onto each simple factor is dense. We will generally assume that I' is uniform, irreducible,
and torsion-free.

The injectivity radius of a point y € Y, denoted InjRad, (y), is the supremum of all r
such that the ball of radius r centered at any lift ¥ € X of y maps injectively to Y under
the canonical projection X — Y. The injectivity radius of Y, denoted InjRad(Y"), is the
infimum over all y € Y of InjRad, (y). We define

Y<r :={y € Y : InjRad, (y) < R}.

Suppose Y, is a sequence of locally symmetric spaces obtained from quotienting X by a
sequence of torsion-free lattices. We say that the sequence Y,, Benjamini—Schramm converges
to X if, for every R > 0, we have

VO]((Yn)SR)
vol(Yy,)

We say that the sequence Y, is uniformly discrete if there is a universal non-zero lower bound
on InjRad(Y,,).

— 0.

3.8. Plancherel convergence. Let G denote the unitary dual of GG, consisting of isomor-
phism classes of irreducible unitary representations of GG, and endowed with the Fell topology.
Suppose [' is a cocompact lattice in G. Then

(25) L*(T\G) = P m(r,

red
where the multiplicity m(w,T') = dim Homg(m, L*(T'\G)) is finite, and m(w,T) = 0 for all
but countably many 7. We define the spectral measure on G relative to I' as

pr: vol(F\G Zm ™ 1)r
e
An important component of the proof of Theorem 1.1 is the limiting behavior of the spectral
measure yur when Y = I'\ X converges Benjamini-Schramm to X.
Recall that we have fixed a Haar measure dg on G. If f € C"X’(G) and m is an irreducible
unitary representation of G, we define the trace class operator 7( f o g)dg. The

Plancherel measure dup; is the unique Radon measure on G Verlfymg the inversion formula
fle) = fﬂec tr 7w (f)dpp (7).

As our main interest is L?(I'\ X) rather than L*(T\G), as in (25), we shall restrict our
attention to irreducible unitary spherical representations 7w of G. An irreducible representa-
tion is said to be spherical if the space of K-invariant vectors is non-zero, in which case it
is one-dimensional. Any such representation can be realized as the unique spherical subquo-
tient 7, of the (unitarily normalized) principal series representation Indgx,\, where \ € af
and y is the character exp(A(H(p)) of the minimal parabolic P. Since 7y ~ 7 if and only

if there is w € W with A\ = w)’, the map sending 7, to A descends to an injective map
15



from the spherical unitary dual G to ai/W. Let the image of this injection be denoted
al,/W; it contains all of a*/W. By comparison, for any A € ag, the matrix coefficient (rela-
tive to the inner product given by integration over K, which is unitary only for A\ € a*/W)
of any unit vector in ¥ recovers the Harish-Chandra integral expression for the spherical
function in (16). Without abuse, we may then speak of A\ as the spectral parameter for .
In this parametrization, the restriction of the Plancherel measure to the unitary spherical

representations has density function equal to |¢(A)|7 on a*/W and is identically zero out-

-~

side of this locus. Moreover, if A € a} /W and f € C*(GJK), then trmy(f) = f(N), the
Harish-Chandra spherical transform of f evaluated at A, as defined in (17).
We have the following result [Deil8; ABB+17].

Theorem 3.3. Suppose I',, is a sequence of cocompact, uniformly discrete lattices in G.
Then the following are equivalent:

(1) The sequence of locally symmetric spaces I',\ X Benjamini—Schramm converges to X .

(2) For every f € C*(G)

(26) /étmr(f) dur, () —>/étr7r(f) dpp ().

For \ € aX, let L*(T'\ X)), denote the K-invariant subspace of the my-isotypic component
of L*(I'\G). Taking K-invariants in (25), we obtain an orthonormal basis Br = {1;};>0 of
L?(I'\X) such that ¢; € L*(I"\X),,. The functions t; are the Maass forms introduced in
§1.2 and ), is their spectral parameter. For a W-invariant subset @ C a*/W recall from the
statement of Theorem 1.1 that N(Q,I') = Z/\jeﬂ dim L*(I'\ X),, .

The arguments of Section 6 in [Pet23b], with slight modifications, imply the following
result.

Proposition 3.4. Suppose T'), is a sequence of cocompact uniformly discrete torsion-free
lattices in G such that the corresponding sequence of locally symmetric spaces Benjamini—
Schramm converges to X. Let 2 C a*/W be a bounded measurable subset such that jip)(0€2) =
0. Then

N(Q,T,)

vol(Y,) —pe ()] =0

as n — 0.

N(ern)
vol(Yn)
statement of Theorem 1.1, it suffices to assume that € is compact with non-empty interior,

as in this case it contains an open ball.

In the deduction of Proposition 3.4 fromATheorem 3.3, the main difficulty is that the
indicator function of € is not of the form f for some f € C®(G/K). The latter class
of functions may be identified, using the Harish-Chandra Paley—Wiener theorem, with the
W-invariant functions in the Paley—Wiener space PW(ag). All such functions restricted to
a’ /W vanish at infinity and thus we may use the Stone-Weierstrass theorem (together with
Urysohn’s lemma) to approximate g on a* /W by elements in PW(a%:)". From here the
arguments in [Pet23b], in particular the proofs of Proposition 6.5 and Theorem 1.9, can be
repeated.

For our purposes, a non-zero lower bound on ultimately suffices. Thus, as in the
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3.9. Spectral gap. If (7, V,) is a (not necessarily irreducible) separable unitary represen-
tation of GG, then we define its integrability exponent by

q(m) :==1inf{q > 2 : (w(g)v1,v2) € LI(G) for vy, vy in a dense subspace of V, }.

We say that (7, V) has a spectral gap if ¢(7) < oo, and that a family of unitary representa-
tions {(m,, Vx,)} has a uniform spectral gap if we can find a uniform upper bound on ¢(m,).
We call the representation tempered if ¢(m) = 2.

4. SPECTRAL ESTIMATE

In this section, we establish an upper bound on the spectral sums appearing in (1) by
averaging over an expanding spherical shell. As in the classical proof of quantum ergodicity,
the insertion of this time dependent averaging operator, or wave propagator, will allow us in
later sections to use their ergodic properties in the presence of a spectral gap.

We now drop the dependence on n in the subscripts, writing I' < G for a cocompact lattice
in G, Y =TI'\X, and ¢, for the orthonormal basis of Maass forms on Y.

4.1. Averaging set. We fix a simple factor G; and let Go = G5 X -+ X G, denote the
product of the remaining simple factors (if any). Let Kj (resp. Kg) and A; (resp. As)
denote the images of K and A inside G (resp. G2). We decompose a as a; @ Lie(.Ay), where
a; = Lie(Ay). For r > 0 and H € a; let By, (H,r) denote the Euclidean ball in a; of radius
r and centered at H. Similarly, B2(0,r) denotes the Euclidean ball in Lie(Ag) of radius r,
centered at 0.

Let Hy € a; 4+ be non-zero and ¢y, t > 0. In practice, ¢ will be large and tending to oo, €
will be sufficiently small but fixed. We shall sometimes refer to Hy as the directing element;
it will be fixed and all implied constants will depend on it. We let

(27) Sy = Ky exp(By, (tHo, €0)) K1 C G; and B = Ky exp(Ba(0,€))Ks C Go.

We will propagate eigenfunctions along the subset

(28) E, =S xBcCG

using the right-regular representation or\¢ of G on L?*(I'\G). Note that, for any function

f € LY(G), the adjoint of gr\g(f) is given by oma(fY), where f¥(g) := f(9~'). We may
then define an operator U, and its adjoint U, by
U, = QF\G<€_tp(HO)]1Et) and U = QF\G<€_tp(HO)]1Et—1).

Note that, for ¢ sufficiently large,
vol(E,) = / J(H)dH = e*rHo),
Bc‘l (tHo,eo)ﬂClL_'_

where we have used (11) and (12), and where J(H ) here denotes the radial volume factor for
G4. Tt follows that the normalization factor of e (o) in the definition of U, is essentially
the square-root of the volume of E;. Observe furthermore that the propagation takes place
solely within Gy, as the ball B C G, is independent of the parameter t. This will eventually
allow us to isolate the conditions necessary to successfully analyze the ergodic properties of
U; to the privileged factor 1, as is reflected in the statement of Theorem 1.1.

We have elected to suppress the dependency in the notation for the sets F;, S;, B, as well

as for the operator Uy, on Hy and ¢;. While this lightens the notational load, we remark that
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in some places, such as in Theorems 4.1 and 5.1, it will be necessary to take ¢y sufficiently
small. More importantly, it will be crucial in Section 6, wherein we prove Theorem 2.2, that
Hy be chosen extremally singular.

Some comments are in order on the relation between the sets E; and the sets used for
similar purposes elsewhere in the literature. The averaging operators used in the work
of Le Masson—Sahlsten [LMS17] were defined by suitably normalized hyperbolic balls. In
the higher rank settings of Brumley—Matz [BM23] and Peterson [Pet23b], “polytopal ball”
averaging operators were used instead. The operator U; introduced above dispenses with
the polytopes, but preserves their core features, by averaging only in a small neighborhood
of the directing element Hy. The operator U;, and the choice of Hy implicit in its definition,
plays a similar role for the real Lie group G that the normalized Hecke operator

g P g oymna(o)

associated with a choice of dominant cocharacter p, plays on an algebraic group G over a
non-archimedean local field (with ring of integers O, residue field of order ¢, and uniformizer
). Note that, similarly to the archimedean setting, vol(G(O)@w"G(0)) x ¢{#2.
Ultimately, the fundamental problem, which we have already emphasized in §2.2; is to
choose a directing element H, for which the corresponding intersection volumes are min-
imized, as in Section 6. By contrast, the results we prove in this section are valid more
generally, with significantly fewer constraints on the group G and the directing element H,.

4.2. Main spectral theorem and reduction to a local integral. Let a be a bounded
measurable function on Y. When viewed as a right- K-invariant function on I'\G, the func-
tion a determines a multiplication operator on L?(I'\G). We consider the time average

1 2T
(29) A(r) =1 / Usals dt.

T T
In line with our convention for U;, we have suppressed the dependency on the parameter ¢,
as well as the directing element H,, from the notation A (7).

The aim of this section is to prove the following result.

Theorem 4.1 (Spectral estimate). Let G be a product of non-compact simple real Lie groups,
and I' < G an irreducible lattice. As in §4.1, we fix a simple factor Gy of G and let Hy € @, 4
be non-zero. Then there exists a finite W -stable set of hyperplanes {P;} in a*, depending on
Hy, such that the following holds. Let Q) C a* ~ U; P; be compact and W -invariant. There
are constants ¢, Ty, €9 > 0, depending on ), such that for all T > 79 and all a € L>®(Y) we
have ,

> Havs )P <e Y (AT,

JA EQ JAEQ

Here, A(T) is defined relative to the parameters ¢y > 0 and Hy.

We begin by reducing Theorem 4.1 to a purely local statement (independent of I'), involv-
ing only GG;. Using the notation introduced in §4.1, we have a* = af @ Lie(Ay)*. We may
decompose A € a* as A = A\; + Ay according to this decomposition. Using the fact that U}
acts on Maass forms 1, of spectral parameter A\ by the scalar

e—tp(Ho)]l/E;(_)\) = e I 5 (N) = e P T g (AT 5(Ny),
18



we find
2T

(A(7)hr, ¥n) (UwaUf Ay, y)dt

:;/T
1/27

<aUt*¢>\7 Ut*¢k>dt

27
(30 = [T (2 [ eI ()P ) v ).

Here, ]TE denotes the Harish-Chandra transform (17), for the group G; or Gy as appropriate,
of the characteristic function of a subset E.

Let Qs C Lie(A3)* be compact and invariant under the Weyl group for G. An elementary
argument using compactness, to be given below, shows that ]T;()\g) is bounded away from
zero, uniformly for Ay € €.

Lemma 4.2. Let G be a product of non-compact simple real Lie groups. Let 2 C a* be
compact and W -invariant. Then there are constants €y,c > 0 such that the characteristic
function 1g of B = K exp(B,(0,€))K satisfies |15(\)| > ¢ uniformly for X € Q.

Proof. As usual, let ¢, denote the spherical function on G. For all A € af, we have p,(e) = 1;
moreover, the map

Rep:axa® — R, (H,\) — Rep_y(e)
is continuous. Thus, for any A € a* we may find a neighborhood U, x V) C a x a* of (0, \)
on which Rep > 1/2, say. By the compactness of € there exists a finite subcover {Vy,}}*,

of {Vi: AeQ};let U = ﬂ;vzl Uy,- Then Rep_x(e) > 1/2 for all H € U and A € Q. We
can therefore choose €y > 0 sufficiently small so that

_ b
Re (]IB(/\)> - bG/B Re (e J(H)dH > —G/B - J(H)dH > 0,
a(0,€0)Nay

2(0,c0)Na 2

for all \ € €2, as desired. O

We are therefore reduced to proving uniform lower bounds for the integral over ¢ in (30).
We note that Lemma 4.2 imposes no further conditions on {25, beyond compactness and
Weyl group invariance. In view of the factorization of the scalar factors in (30) according
to the components A; and Ay, this implies that the hyperplanes P, C af @ Lie(Ay)* that
must avoid in Theorem 4.1 can, and will, be taken to contain Lie(.A3)*. Their exact nature is
described in the following result (with G playing the role of the privileged factor G), which
will then be enough to prove (a more precise form of) Theorem 4.1.

Proposition 4.3. Let G be a non-compact simple Lie group. Let Hy € a, be non-zero, with
centralizer M. Fix a compact and W -invariant subset

(31) QCa N = () W{Aea: MHy—wH,) =0}
wEWr
Then there is g > 0 (implicit in the definition of S;) as well as constants ¢, 7o > 0 such that

1 2T -
—/ e~ 2PUHo) 1T o (N)|?dt > ¢

T

for all X € Q and all T > 7.
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The basic strategy of the proof of Proposition 4.3 is to use the generalized Harish-Chandra
expansion (Proposition 3.2) of the spherical function ¢, along the direction determined by
Hy to reduce the estimate to a weighted sum of complex exponentials. For the off-diagonal
terms, one then needs to provide a uniform bound in 7 of the quantity

27
/ e—itk(wHo—w'HO)dt )

max
waw €W/Wyy
wHAw’

Such a uniform bound will reflect the oscillation of the integrand, provided the phases
MwHy — w'Hy) are bounded away from zero. The latter condition is ensured by the hy-
pothesis on €.

4.3. Reduction to complex exponentials. Recall that M is the centralizer of Hy in G.
Using the Harish-Chandra expansion along M for the spherical function ¢_y, we now reduce
the proof of Proposition 4.3 to a corresponding lower bound, stated in Proposition 4.6 below,
in which the variation in the t-parameter is expressed solely through complex exponentials.
The key input is the next lemma, which uses the generalized Harish-Chandra expansion, as
formulated in Proposition 3.2, as a critical ingredient.

*
reg

invariant. Let Hy € @y with centralizer M. Put Cyy = (bg/ba)27%, where £ = Zaeqﬁ\@& Ma
and by, is defined in (14). Let € := I a(Hp) > 0.
For any €y > 0 (implicit in the definition of S;) there is ty > 0 such that for all X € Q and
all t > ty we have
e HITG (N=Cy Y MwA)Tpur (wA)e ™M) 1 Oeg + ™),
weW /Wy

where BM = Ky exp(Bq(0,¢0)) Ky C M.
Proof. 1t follows from the definition (17) that

Lemma 4.4. Let G be a non-compact simple Lie group. Let €2 C a’., be compact and W -

e—tp(Ho)]T;t()\) _ bGe—tP(Ho)/ S@_A(eH)J(H)dH,

Ba(tH0,€0)+

where B,(tHp,€0)r = Ba(tHp,€0) N ay. Since Q avoids the singular locus, we may apply
Proposition 3.2 to ¢_j, with L = M, to get

(32) eI () = [ Y M) +0(E),

’LUEW/W]W

the implied constant depending only on €2, where
() = be / (etotHor=e 1M (F) ) @M (). T3y (),
Ba(tI{o,eo)Jr
with pM(H) = p(H) — ppr(H) and the factor Jy(H) defined in (15), and
& = / (e—tP(HO)—P(H)J<H)) e~ 2P (1 4 ||H|))*dH,
Ba(tH0,€0)+

with By (H) defined in (24).
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We now let SM = eto BM = K, exp(B,(tHy, €0)) K be the ball of radius €y about e
in M. We claim that for any ¢y > 0 there is ¢y > 0 such that for all £ > ¢, we have

(33) M) =Culgn(\) +0(e)  and & =0(e™).

Inserting this into (32), we recover the statement of the lemma. Indeed, maxyeq |c™(N\)| < 1,
since Q is bounded away from the polar hyperplanes of ¢V, and

]1/5}1()\) :/ L (e~ 0m)p (m)dm :/ Lpu (m)p) (e"om)dm = e_it/\(HO)@()\)-
M M

In the last equality, we have used the fact, which follows from (16), that pi(eZm) =
erM2) M (m) whenever Z € a centralizes M.

For the main term identity in (33), we begin by observing that the parenthetical expression
in the definition of I™()) is asymptotically constant on the support of the integral:

(34) e~ tPHO)=p M) My — 9741 4 O(ey)), Y H € By(tHo, o), ¥t > 0.
To see this, we use a(Hy) > 0 for a € &+ \ @}, to show that, for such H:

JM(H)=27" ( IT (e - e—a<H>)ma> — 92" (H) | O(et(1=Par (Ho)20 (Ho)y

a€<I>+\<I>L

Using this and e?"'(H) = et (Ho)ep™ (H—tHo) — cto(Ho)(1 4 O(ey)), we obtain the claim (34),
which may then be inserted into I ()) to yield

Ba(tHo,e€0)+

We fix ty large enough so that B,(tHy, €y)+ = Ba(tHo, €0) Nap 4 for all £ > to, where ap/ 4
is defined in (13). In particular, the union (J,cy,, wBa(tHo, €) 4 is disjoint, with closure
Bo(tHy, €0). Since Jy(wH) = Jy(H), oY (e*H) = oM (ef) for w € W), the integration
formula (14) implies that

bas / M () Ing (H)AH = Toi (V)
Bu(tH0,60)+

as required.
To estimate the error term &, we first apply (12) to deduce that e~%(Ho)=r(H) J([) <« 1
on B,(tHy,€y)+. Moreover,

Bu(tHy) = min  «(tHy) = 2et.

aeq)*\@xl

Given €y > 0 there exists to > 0 such that Sy (H) > (3¢/2)t for all t > ty and H €
By (tHy, €p). We deduce

&=0 (e<3f/2>t/ 1+ HHH)SdH) =0(e™),
Bu(tHo,€0)+

by the polynomial growth in ¢ of the integral. U
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Lemma 4.4 requires that the compact ) avoid the singular locus. Proposition 4.3, on the
other hand, requires that (2 avoid af_,, a set of hyperplanes depending on H,. The following
lemma makes use of our assumption that Hy is non-zero to show an inclusion of the former
in the latter.

Lemma 4.5. Let G be a non-compact simple Lie group. Let Hy € a, be non-zero. Then
a:ing g aik)ad'

Proof. We must show that

(35) U R.(wH,—w'Hy) 2 [ JR.a".

w,w' eW acd

Since W), consists precisely of those elements of W which fix Hy, we may rewrite the LHS
of (35) as

(36) U Ruw(H,—w'w'H) =[] | Ruw(Hy—w'Hy)
w,w'eW weW w'eW

= |J WR.(H - w'Hy).
QUIEW/WJM

For a € ® we let s, € W denote the orthogonal reflection in a across (¥)*. In particular,

(Hy, o)

(@, )

Note that the subset of all long roots in ® spans a*, as does the subset of all short roots. Since
Hy # 0 there must therefore be a long root §; and a short root f such that (Hy, 5Y) # 0
and (Ho, 55) # 0. Therefore 5, and f; are contained in the LHS of (35). Since W acts

transitively on the subset of all long roots in ® and also on the subset of all short roots, all
of @ is therefore contained in the left hand side of (35). O

(37) HO - SaHO =2

4.4. Proof of Proposition 4.3. Our goal is to prove Proposition 4.3 which, as we have
seen in §4.2, implies Theorem 4.1. From Lemmas 4.4 and 4.5, it suffices to show the following
result. We explain this implication in detail after the conclusion of the proof.

Proposition 4.6. Let G be a noncompact simple Lie group. Let Hy € @, be non-zero. Let
Q C a* N ap,y be compact and W -invariant. There is € > 0 (present in the definition of
BM) as well as constants ¢, 7y > 0, such that

1 2T
3/

forall X € Q.7 > 1.

Z M (w1 gar (w\)e |t > ¢
wGW/W]u

Proof. We expand the square and swap the order of summation and integral to get the sum

of the diagonal term
_ 2
D= Y ’cM(w)\)]lBM(w/\) ,
’LUEW/W]W
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which is independent of 7 and t,, plus the off-diagonal contribution

S 1 27 . ,
E(r,A) = Y MwN)eM(w N pw (wA) Lpu (w'))= / e HwA=w ) (Ho) gy
w,w' €EW/Wiy T
w#w’

We claim that for any compact 2 C a* \ a;,, we have

(1) D(A) > 1 for all A € Q, and
(2) E(r,\) < 77t for all A € Q,

with the implied constants depending on €2. Taking 7y sufficiently large will guarantee that
FE is negligible with respect to D for 7 > .
We begin by proving the stated lower bound on D(\). It will be sufficient to show that

there is a choice of ¢y > 0 such that 1zm(A\)e™()) is bounded away from zero. Recall that
¢ (X) is holomorphic and non-vanishing on the open subset containing af,, described in (22).

Since Q C aj,, and Q is compact, we deduce that ¢*()) is uniformly bounded away from

zero on (). Furthermore, we have

T3 (\)] = [Re Tom (V)] ] / MResoMA(g)dg\.
B

As in the proof of Lemma 4.2 there exists a neighborhood U of the identity in G such that
Rey_x(g) > 1/2 for all g € U and X € 2. We can therefore choose ¢y > 0 small enough in
the definition of BM = Ky exp(B,(0, €0)) Ky so that, for all A € Q,

Re o™, (9)dg > 1Vol(BM).
BM 2
We deduce that 1w () is bounded away from zero for all A € 2, proving point (1).

We now address the off-diagonal term. Firstly, since A is confined to the compact €2, and
T (w)) is continuous, we have that 1 ga(w)) is uniformly bounded on €. On the other
hand ¢ (w)) is singular on a subset of 0gng S0 We shall require that €2 avoid agj,,,. Therefore
for A € Q we also have a uniform bound on ¢ (w)).

We thus have
1
E(r,\) € max -
w,w’EW/WM T
w#w’
Notice that a;,, is precisely the locus where the exponential phase vanishes. Since A is
confined to a compact 2 C a* \ aj_,, the phases appearing in the ¢-integral are all uniformly

bounded away from zero. Thus, if X is any one of the differences wH, — w'Hy, then

2T
/ efit)\(wHofleo)dt )

27
/ e‘““”dt’ = ML= eI < 20X <

which establishes point (2), and completes the proof of Proposition 4.6. U

We now return to the proof of Proposition 4.3. Let ¢y, ¢ > 0 be given by Proposition 4.6.
The proof of Proposition 4.6 shows that we may shrink ¢; > 0 while maintaining the value
of ¢ > 0. We may therefore take ¢y > 0 small enough so that the O(¢p)-term in Lemma 4.4
is bounded by ¢/4. We are furthermore free to increase 7y in Proposition 4.3 as we wish. We

therefore choose 75 > 0 large enough so that for any ¢ > 75 the O(e™*")-term in Lemma 4.4 is
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smaller than ¢/4. Taking to = 79 and the above choice of ¢ in the statement of Proposition
4.3 will yield the lower bound of ¢/2 in that statement.

4.5. Identifying af, ,; for extremal M, in classical groups. In this section, we assume
that G'is simple. We wish to describe the nature of a; 4 in case the directing element H, € a,
is extremal. Thus far we have only defined extremal for the classical types as well as F-
as these are the only roots systems admitting semi-dense root subsystems. However, the
spectral estimate (Theorem 4.1) holds in any type. In order to have a complete analysis for
all types in the following proposition, we shall define extremal elements in case the reduced
root system is of type Eg, Eg, Fy or G5 via the table below. However, in subsequent sections,
the term extremal will again be reserved only for those elements specified in § 3.6.

type of ®,eq | extremal nodes o | type of @y red

F4 —o=0—e Bg or 03
GQ (== Al

TABLE 2. Extremal nodes for the remaining exceptional types

We will show that the inclusion (35) is nearly an equality in most cases. The basic
principle is that the Weyl group W), of an extremal Hj is large, which will tend to minimize
the number of distinct lines R.(wHy — w'Hy) C a.

Proposition 4.7. Assume that G is simple and let Hy € a, be extremal.
(1) If ®req is of type Ay, By, Cp, or Gy then af, 4 = a
(2) If ®req is of type D, then

apq = a5, UW.(R.a@y),

sing

*
sing*

where wy is the unique extremal fundamental coweight.

Proof. We must show that

(1) If G is of type A, By, C, or G then equality holds in (35);
(2) If G is of type D,,, then equality holds in (35) with the right-hand side replaced by

( | Ra¥) UW.(R.Y)

acd
where @) is the extremal fundamental coweight (a multiple of Hy).

In all cases, by assumptionAHo is a non-zero multiple of an extremal fundamental coweight,
which we denote by wy € AY. Without loss of generality we can simply take Hy = wy.

We begin by assuming that ®,.q is of type A,, B,, C,, or G5. For equality to hold in
(35), we must have that for any w € W/W),, the difference wy — wwy must lie in the line
spanned by a coroot. In fact, using the computation (37), we need only to show that every
w € W/Wy with w # 1, can be represented by a reflection in W. First note that the
reflections s, for a € f, \ CDjed, 1 are pairwise distinct mod W)y, that is, the image of the
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set {1} U {sa | @ € @4\ Oy} in W/Wyy has cardinality [, ~ @1, [ + 1. For point

(1), it will therefore suffice to check that
(W/War] = (@0~ e | +1

if ®.oq is of type A,,, B,, C,, or Gs. For that we compute the following table:

typeof G| W] (W] W/ Wl | [Pred] | Pred,n| [P ea ™ Preau]
A, (n+1)! n! n+1 n(n+1) (n—1)n n
B, 2"n! 27" n —1)! 2n 2n? 2(n —1)? 2n-1
Ch, 2"n! 27" n —1)! 2n 2n? 2(n —1)? 2n-1
D, 2r=Inl | 2772 (n —1)! 2n 2n(n—1) | 2(n —1)(n —2) 2n-2
Eg 51840 1920 27 72 40 16
Er 2903040 51840 56 126 72 27
Eg 696729600 | 2903040 240 240 126 57
Fy 1152 48 24 48 18 15
Go 12 2 6 12 2 5

An examination of the boldfaced columns of the first, second, third, and last rows concludes
the proof of point (1).

We now take G to have root system D,. Consulting Table 1, we may then take the
extremely singular element Hj to be the highest fundamental cowelght wy. To prove point
(2), we must therefore show that, for any w € W/W),, the difference w) — wwy is either
in a line spanned by a coroot or by w; = Hj itself. The 2n — 1 elements w € {1} U {s,, :
a€ O\ OF ) have distinct images in the size 2n quotient W/Wyy, and by (37), satisfy
w) —wwy € U co Ra”. The remaining coset in /W)y, in the notation of paragraphs (IX)
and (X) of Ch. VI §4.8 of [Bou02], is represented by, say, s12, which changes the sign of the
first and second basis vectors 1, €9. Since £; = wy, this yields w) —s12(wy) = w) —(—wy) =
2wy, as required. This concludes the proof of point (2), and hence the proposition. O

5. GEOMETRIC ESTIMATE: STATEMENT AND REDUCTION STEPS

We deduce from Theorem 4.1 that, under the stated conditions on 2, 7, and a, that

> Karyy, )] <<Z\ 5 )| = 1A [Is,

J:AEQ

where the spectral sum has been extended by positivity, and the right-hand side is the
Hilbert—Schmidt norm of the operator A (7). We have thus reduced our problem to bounding
the Hilbert—Schmidt norm of A(7).

The remainder of the paper is organized around the proof of Theorem 5.1 stated below.

Theorem 5.1 (Geometric estimate). Let G be a product of non-compact simple real Lie
groups. Let X = G /K, where K is a mazimal compact subgroup, be the associated symmetric
space. Let T' < G be a torsion free, cocompact, irreducible lattice and set Y = T'\X. Assume
that G admits a simple factor G satisfying condition (1) of Theorem 1.1. Let Hy € @y 4 be

an extremal coweight for Gy, identified with an element in @, through a; C a.
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There are constants cy, ca, c3, €0 > 0, depending only on G, an integer k € Z>,, depending
only on the reduced root system of G1, and 6 > 0, depending on the integrability exponent of
Gy acting of LE(T\G), such that, for all 7> 1 and all mean-zero functions a € L=(Y'),

C1T

(log )" e

2 2 2
(38> ”A(T>||HS < ||a||2 762 Ianad(Y)dimyVOI(Y§C2T+C3)||a”oo'

Here, A(T) is defined relative to the parameters ¢y > 0 and Hy.

The purpose of this section is to reduce the proof of Theorem 5.1 to Theorem 2.2 from the
introduction, applied to the intersection of the spherical shell S; C G; and its translates in
the irreducible symmetric space X; = G1/K;. We carry out this reduction by a thick-thin
decomposition of the kernel of the operator A(7) in Lemma 5.2, a calculation of the support
of this kernel in Corollary 5.5, and, most notably, an invocation of the Nevo ergodic theorem
(Proposition 5.6 below). The remaining sections of the paper will then be dedicated to the
proof of Theorem 2.2.

Together, Proposition 3.4, Theorem 4.1, and Theorem 5.1 yield the estimate (1), complet-
ing the proof of Theorem 1.1 as we now explain. Let A, (7) denote the operator defined in
(29) with respect to the test function a,. Inserting the aforementioned results, along with
lan]|3 < vol(T,\G)llan %, [lan|lc = O(1), the uniformly discrete hypothesis on I',, and the
uniform spectral gap for GG1, we find that for all n and 7 sufficiently large

Vi 2 e v < e 3 N u) e

)\(")EQ A eq
1

mHAn(T}H%{s

(IOg T)k 4 ear VOI((Y”)§C2T+C3) )
T vol(Y;)

TL?

<

(39) <

We can choose for each n a choice of 7, such that the above expression goes to zero. So
long as 7, — oo the first term will go to zero. It follows from the Benjamini—Schramm
convergence of Y, towards X that there exists a sequence of R,, tending toward infinity such
that
o = VOI((Yn)ﬁRn)
T vol(Y,)

Let r, be a sequence tending to infinity such that r, + ¢3 < R,, and e®"/q,, — 0. Then,
setting 7,, = 7, /co, the second term in (39) is

Jrrnlea VOl((Yn)S'r’n—i—CS) < eamleg, )
vol(Y,,) - ’

— 0.

as desired.

5.1. A general bound on Hilbert—Schmidt norms. We begin with a very general upper
bound on the Hilbert-Schmidt norm of an integral operator on L*(T'\G).

Lemma 5.2. Let G be a product of non-compact simple real Lie groups. Let A be a mea-

surable function on X x X which is invariant under the left diagonal action. For a uniform
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lattice T' < G let A be the integral operator on L*(T\G) with kernel 3. A(g,vh). Then
there is ¢ > 0, depending only on G, such that

cT

€
Al < [ [ 14 mPdgah + vl (e AR

for all T > 0 satisfying {g~'h : (g,h) € supp(A)} C K exp(B,(0,T))K.

Proof. See Lemma 5.2 of [BM23], which is an adaptation of Lemma 5.1 of [LMS17] to the
general setting. 0

To prove Theorem 5.1, we shall apply Lemma 5.2 with the integral operator A(7), defined
in (29). This will require examining its kernel, which is described in the following result.

Throughout this subsection and the next, we may work under more general hypotheses
on G and H, than those imposed by the conditions of Theorem 5.1. The condition on the
subsystem of reduced roots of G; and the extremal coweight hypothesis on Hy will only play
a role starting in subsection 5.3.

Lemma 5.3. Let A(7) be the function on I'\(G x G) given by

1 27
A(T)(g,h) = ;/ e~ 2tp(Ho) /E . a(x)dzdt.
T gbiNhE

Then the kernel of A(T), as an integral operator on L*(T\G), is given by Z'yEF A(7)(g,7vh).

Proof. By definition, for a function f € L?(I'\G),

(U,aU;) f(g) = e~ 2etH0) / algh) [ f(ghiha)dhadh,.

B E;

We change variables in the inner sum by setting h = gh;hy and use Fubini’s theorem to get
(U.al}) f(g) = e 200 [E alghy) /G F ()1 5 (g™ h)dhdiy
— ¢~ 2tp(Ho) /G f(h) /G a(ghi) 11 (hi' g~ h)Lg, (h1)dhydh.
We then change variables via x = gh; to get

W) 1(6) =) [ 10 [ ale)tgp (a1 (o 0)dod

:eth(HO)/ f(h)/ a(x)dzdh
G gEtNhE:

= ¢ 2tr(Ho) f(h / a(x)dxdh.
(h)) S (z)

NG ~yerl

Averaging over t yields the result. 0
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5.2. The support of the kernel function. To obtain the second term in the estimate
(38) via an application of Lemma 5.2, it will be necessary to calculate the real parameter T’
which bounds the size of the support of the kernel.

It follows from Lemma 5.3, and the bi- K-invariance of the sets F;, that
(40)
{g7'h: (g,h) € supp(A(7))} C U {g7'h: gENhE, # 0} = U K{e" : " ENE, # 0} K.

T<t<2T T<t<2T

We therefore need to estimate the Euclidean norm of the largest element H € a, for which
e E, intersects E,. Now, recall from (28) that E; factorizes as S; x B C Gy X Gy, so that

(41) HE,NE, = (e"8,nS)(e™BNB), where H=H,+ H, € a; ® Lie(Ay).

We may take ey > 0 small enough in the definition (27) of B so that e#2BNB = () if || Hy|| > 1.
It therefore suffices to estimate the Euclidean norm of the largest element H € a; ; for which
efl'S, intersects S;. For this reason, for the rest of this subsection, we may and shall assume
that G = (G is a non-compact simple Lie group and E; = S;.

We begin by proving the following triangle inequality in the irreducible symmetric space
X. Given H € a, let Conv(W.H) denote the convex hull of the W-orbit of H. We define
a partial order on a, via H; < Hj if and only if Conv(W.H;) C Conv(W.Hy). We define a
“Weyl chamber-valued metric” on G/K via dg, (9K, hK) =H € a; if g7 'h € Ke" K.

Lemma 5.4. For all z,y,z € G/K, we have
da+ (flj, Z) j dﬁ+ (.T, y) + da+ (y7 Z)

Proof. We first reduce the proof to the corresponding Lie algebra version, using [KLMOS].
Let p be the orthogonal complement to £ with respect to the Cartan involution; thus p is
invariant under Ad(K’). We have a Cartan decomposition with respect to adjoint K-action
on p, namely p = | |, K.H.

Let k : p — a, denote the corresponding Cartan projection, and let dgfjf P Xp—oay,
dM(X,Y) = k(Y — X), denote the associated Weyl chamber-valued metric; this metric is
invariant under the action of the Cartan motion group K X p. According to Main Theorem
1.2 of [KLMO8g], given three points z,y, 2 € G/ K such that dg, (z,y) = A1, da, (y, 2) = A2 and
da, (x,z) = Ag, there exist three points X, Y, Z € p such that dia‘f(X, Y) = Ay, di{f(Y, Z) =X
and diarf(X ,Z) = Az (and vice versa). Thus, it suffices to show that for any XY, Z € p we
have that

inf inf inf
diy (X, Z2) 2d7 (X, Y) +d2 (Y, Z),
which is in turn equivalent to showing that for any X,Y € p we have that
(42) KX +Y) 2 k(X)+r(Y).

Recall that the Killing form on p is positive definite. Let II, : p — a denote orthogonal
projection with respect to the Killing form. By the Kostant convexity theorem [Kos73]
(Theorem 8.2), for any X € p, we have II,(Ad(K).X) = Conv(IW.X). Now, given X,Y € p,
we wish to show (42). By applying an element of K, we may assume that X +Y € a,, and

thus k(X +Y) = X +Y. We also have that X = k1.x(X) and Y = ko.k(Y) for some k; € K.
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We thus have
KX +Y)=X 1Y
=I,(X+Y)
1L (X) + (V)
= I, (k1.k(X)) + o (ko.s(Y))
€ Conv(W.k(X)) + Conv(W.k(Y))
€ Conv(W.(k(X) 4 £(Y))),

as required. O
Let Hy € a, be non-zero. Let
(43) P = Conv(W.(Hy — woHy)) Nay,

where wy is the longest word of the Weyl group. For ¢t > 0 write P, = tP. We define a
“polytopal norm” on a; by putting |H||p := inf{t : H € P,}.

Corollary 5.5. There is ¢g > 0 small enough (in the definition of S;) such that any H € a
for which e S; N Sy # O satifies |H||p < t+ 1. In particular,

{g7'h+ (9,h) € supp(A(7))} C K exp(Ba(0, T))K,
where T' = (17 + 1)||Ho — woHy|-

Proof. We may take ¢, small so that By(0,¢y) C Conv(W.Hy), and thus B,(tHg,€y) C
Conv(W.(t + 1)Hy). We apply Lemma 5.4 with y € e#5, N S;, v = K, and 2z = e K,
to obtain

H=ds, (K,e"K) = dqs, (K,y) +ds, (y,e" K) 2 (t+1)Ho + (t + 1)(—woHo).

It follows that H € P,;1. To obtain the second statement, we apply (40) and the fact that
P, is contained in the Euclidean ball in a of radius t||Hy — woHo||. O

Let ¢ > 0 be as in Lemma 5.2. If we set ¢; = ¢|Hy —woHyl|| and ¢ = ¢5 = 2||Hy — woHo ||,
we obtain the second term in (38).

5.3. Main term bound. We denote the main term in Lemma 5.2 by

(44) M(r) = / . /G |A(7) (g, k) Pdgdh.

The goal of this subsection is to show that, under the assumptions laid out in Theorem 5.1,
and assuming Theorem 2.2, that M (7) is bounded by the first term in the estimate (38).
This will then fully reduce the proof of Theorem 5.1 to that of Theorem 2.2.

We shall make use of the following ergodic theorem due to Nevo [Nev9s]:

Proposition 5.6 (Nevo). Let G be a non-compact simple real Lie group with finite center
acting by measure-preserving transformations on a probability space (3, ). Let rs denote the
action on L*(X, ) and v the restriction to the orthocomplement L3(X, i) to the constant

functions. Assume that r$ has a spectral gap. There exist constants 6,C > 0, depending on
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the integrability exponent for r%, such that for any measurable set E C G of finite measure,
we have

|8 (vol(B) "1g)]|,, < Cvol(E)~,
where || - ||op denotes the operator norm.

Remark 5.7. In Section 4.1 of [GN15] a sketch of the proof of Proposition 5.6 is given. From
that discussion one sees that the best possible admissible value of 6 by the proof technique
presented there is § = 1/4, corresponding to r{ being tempered.

The following preliminary bound is valid under more general assumptions on G and Hy
than those laid out in Theorem 5.1.

Proposition 5.8. Let G be a product of non-compact simple real Lie groups and I' < G an
irreducible lattice. Fiz a simple factor Gy of G and let Hy € @y, be non-zero.

There is 0 > 0, depending on the integrability exponent of Gy acting on L3(T'\G), and ¢y >
0 (implicit in the definition of Sy and Ey), such that for T > 1, and mean-zero a € L*(Y),

2 2T 2

M(T) < @/ er(H)‘ / e~ 2P Hoyol(ef S, N S,) ~0dt| dH,
7 Pry1 max{r,||H| p—1}

where the H-integral is taken over P,y C Gj.

Proof. For a measurable set E C G it will be convenient to let or\q(E) = or\g(vol(E) 'g).
Inserting Lemma 5.3 into the definition of M(7) and changing variables x +— hz and g —

h~tg, we have
1 27
M(r) = —2/ / / e_Qtp(HO)/ a(x)dzdt
TJneJalJr gENhE;

1 2T
= —2/ / / e2t'°(H°)/ a(hx)dxdt
™ JneJalJr gENE;

Using Cartan decomposition for the integral over g € G and the fact that kE; = E, for all

k € K, this equals
2T
/ eth(HO)/ a(hx)dzdt
T kel E:NE;

oo,
T2 NG JK Jay

Changing = +— kx and using again that k™1 E, = E, we get

1 2T
—2/ // / e_QtP(HO)/ a(hkx)dxdt
™ JNGJK Jay | Jr efl ByNEy

Changing variables hk — h, we can absorb the integral over k € K into the integral over
h € T\G. Further recalling that J(H) < %) the above expression is then bounded by

2
1 / / 2p(H)
—2 e
T2 Jr\G Ja,

dHdh.
We write H = Hy + Hs € a; & Lie(Ay) as in (41). Taking ¢y small enough in the definition
of B C Gy, we may truncate the Hy integral to ||Hz|| < 1 and apply vol(e2B N B) < 1.

From Corollary 5.5 we may truncate the H; integral to ||H;||p < 7+ 1. By the same token,
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dgdh

2
dgdh.

2

J(H)dHdkdh

2

J(H)dHdkdh

27
/ e~ 2trHo)yol(e? B, N Ey) (era (e By Ey)a) (h)dt




given H; € P, 1, the t for which e#15, N S; # () satisfy ||[H||p — 1 < t. Inserting this, and
applying the Minkowski integral inequality, we obtain an upper bound of the form

_/ p(H1)
Pri1 XBQ 0 1)

Let QF\G denote the right-regular representation of G on L3(T'\G). Since a € L(T\G), we
have

2
/ e~ 2trtHo)yol (et S, N St)HQr\G(eHEt N Ey)(a)ll2dt| dH.
max{7,||[H1|[p—1}

lera(e” By 0 Ey)all = [lop\g(e" By N Ey)allz < [|all2llobg (e Bt NV Er)llop,

where Qg\G(E) is defined similarly as or\¢(F). From the spectral decomposition (25), we
have
||Q%\G(6HE1§ NE)|lop = sup [lw(e By N Ey)lop.
nCL2(I\G)
Since 7 is irreducible, it is a tensor product of irreducible representations m; of the simple
factors G1,...,G, of G. We write 7 = m ® 0, where 0 = my ® - -+ ® 7, is an irreducible
representation of Go. Then, from (41), |7 (e E, N E})|lop 18

71 (€15, 1 Sy)[lopllo (2B N B)|lop < [|m1 (7S M Sh)|lop < ||Q%\G’G (€511 S)lop-

Here we have used the trivial bound ||o(e2B N B)|lop < ||Lezpnsllri(e) (independently of
o).

Since I' is irreducible in G, the restriction of pIQ\G to any simple factor has a spectral
gap; see [KS09, p.3] for details. Proposition 5.6, applied to the simple factor Gy acting by
right-translation on ¥ = I'\G, implies that there is § > 0, depending on the integrability
exponent of Gy acting of L3(I'\G), such that

lotala (€S N Sy [lop < vol(e™5, 1 S,)~*
Inserting this (and renaming H; to H) yields the statement. O

We now make full avail of the assumptions on GG and Hy in Theorem 5.1 to conclude the
reduction of its proof to Theorem 2.2.

Proposition 5.9. Let G and Hy, and the simple factor Gy, be as in the statement of Theorem
5.1. There is a positive integer k, depending only on the reduced root system of G1, and a
constant 0 > 0, depending only on the integrability exponent of Gy acting on L3(T\G), such
that for for all 7> 1,

mir) < LB e

Proof. If M is the centralizer of Hy in Gy, it follows from Proposition 2.1(2) that ®yeq s is
a semi-dense root system in the reduced roots of G;. Taking 7 sufficiently large, we may
insert Theorem 2.2 into Proposition 5.8, to get

2 2
w(r) < 1ol / 2ot / (log t)*e~ 200 gt |"q .
T Pry1 ax{7,||H| p—1}

The square of the inner integral is bounded up to a multiplicative constant by

(Qog 7)™ _sojsr)mpirno

62
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so that for 7 > 1,
(log )2
202

We may then apply Corollary 5.11 below, and rename 2k to k, to conclude the proof. O

(45) M(r) < Jalf [ exmn-ainrtinigp,
P2‘r

5.4. Application of the degenerate Brion’s formula. Let F; C a;, 1 < j < J, denote
the codimension one faces of P whose relative interior lies in a,, and define the associated
polyhedral cones C; = {\H : H € F;,\ € R;}. Then a; = U;C; and the integral in (45)
can be broken up as

J
/ e20p(H=2||H||pHo) g1 — ZIJ(T)’ Ij(T) _ / e20p(H=2||H|[pHo) 7 F7
P2T P27'ij

J=1

Because || H||p restricted to C; is simply a linear functional, the integrals I;(7) could be
expressed, via Brion’s formula [Bri88; Bar93], as a weighted sum of the value of the integrand
at the extremal vertices of Po, N Cj, provided that the values of the exponent at adjacent
vertices are distinct. This property does not, however, hold for ;(7), as we presently show.

Observe that the vertices of P, NC; are simply the vertices of PNC; dilated by a factor of
27. That both 0 and Hy—woH, are adjacent vertices of P follows directly from the definition
of P in (43) and the definition of C; above. Now, the exponent in [;(7) clearly vanishes at
0. Moreover, since |[v||p =1 at every vertex v of P N C}; other than 0, the exponent at such
a vertex is

p(v) —2p(Hy) = p(v) — p(Ho — woHy),

which then clearly also vanishes at v = Hy — woH,.

In preparation for a more general form of Brion’s formula, which allows for the exponent
at adjacent vertices to be the same, we now show that p(v) — p(Hy — woHy) < 0 for all other
vertices of P N Cj.

Lemma 5.10. Let H € a.. Then H is the unique vertex of Conv(W.H) mazimizing the
pairing with p. In particular, p(v) — 2p(Hy) < 0 for all vertices v of the polytope P N C}
other than 0 and Hy — woH,.

Proof. Denote by L the centralizer of H in G and by ®, the roots of A in L. Note that, for
any w € W, we have p —w™'p =37 44 aco 50 that p(H) — p(wH) = (p —w™'p)(H) =
> oot waco ¥(H) > 0. If equality holds then {a € ®* : wa < 0} C @y, since ®;, consists
precisely of those roots that vanish on H. But then w € Wy, by (9) of Proposition 3.1. [

For A € a*, the degenerate Brion’s formula [Pet24] implies that

(46) / MG = Z cpvol(F)(27)dmF) g2rA(E)

P2rNC;j faces F of PN Cj on

which A(F') = constant
where the constants c¢p are independent of 7, and cp is positive on the maximal dimensional
face maximizing A. Let /; € a* denote the unique linear functional so that /;|r, = 1. Then
|H|lp={;(H) for all H e PN C;. We apply (46) with A = 20(p — 2p(Hy)¢;) € a* and use
the preceding discussion to obtain the following result.
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Corollary 5.11. We have I;(1) < 7.

This concludes the proof of Proposition 5.9 and therefore of Theorem 5.1, subject to the
verification of Theorem 2.2.

6. INTERSECTION VOLUMES

In this section we present the proof of Theorem 2.2 which bounds the intersection volume
vol(efl S, N S;), under suitable assumptions on G and Hy. We shall usually assume that G is
semisimple, as most of the results hold in this generality, and indicate the places where we
need to impose the condition of G being simple. We extend the definition of S; from (27) to
the case of G semisimple in the obvious way.

6.1. An initial bound due to J.-P. Anker. We first present a bound on vol(e”S; N S;)
communicated to us by J.-P. Anker which gives a weaker bound but with much less work.
This will serve as a brief illustration of how harmonic analytic information, such as bounds on
the spherical function and the c-function, can be used to estimate the geometric intersection
volume, and will act as a yardstick to measure the extent to which a more elementary
approach falls short of the bounds in Theorem 2.2. In this subsection with take Hy, H € a
to be arbitrary. We first recall that, for A € a* we have the bound

loa(e™)] < @ole™).

See for instance Prop. 4.6.1 of [GV88].
We thus have

vol(eS, N S,) = (14

t

/ T, (N P () (V) Pdx

«15,)(e")

<en(e) [ s (Pl Px
“

= po(e")|[1s,]72 = wole")vol(Sy).
We have that vol(S;) < e?(tH0) and by Anker [Ank87] we have

wo(ef) =< e=PH) H (1+ a(H)).

ae@jed

Letting L denote the centralizer of H in GG, we thus get
(47)  vol(e8,n S,) < !~ T (1+ a(H)) < e/~ | [®ra>Freas],

+
acd

as all roots in @, ; vanish on H.
Inserting (47) (applied to the simple factor G of G), instead of Theorem 2.2, into the
analysis leading to (45) would yield

2
M(r) < ”Z”;/ HH”?@ e Py L 1(1-6) eOp(H=2|H|[pHo) j FT
720
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Here ®! , and ®f are the reduced roots and positive reduced roots of the simple factor G,
and @;d, 1, are the positive reduced roots of L, the centralizer of H in G;. Now Remark
5.7 shows that 2|®. 5\ @, [(1 —60) > 1 for all H # 0, in which case the above integral is
at least 72, killing the decay in 7. We conclude that a bound such as (47) would not suffice
to complete the proof of Theorem 1.1.

The point of the remainder of this paper is to strengthen this bound to replace the poly-
nomial factor in H with a log factor in case Hj is extremally singular.

6.2. The endpoint Kunze—Stein phenomenon. The Kunze-Stein phenomenon [KS60]
says that if G is a semisimple real Lie group, then given f € LP(G) with p € [1,2) and
g € L*(G), we have

1F* glla < epll fllllgll2:

In fact the Kunze-Stein phenomenon is one of the main ingredients powering the Nevo
ergodic theorem [Nev98] (i.e.,Proposition 5.6). In case G has real rank one, Tonescu [lon00]
strengthened this to an endpoint estimate

1f * gll2.00 < cll fll2allgll2.1,

where || - ||, is the (p, ¢) Lorentz norm. However, as remarked in [Ion00], this bound fails in
higher rank. It was noticed by the second author that if G is a group satisfying the endpoint
Kunze-Stein phenomenon for bi- K-invariant functions, then vol(ef’.S, N S,) < erZtHo—H) for
any choice of Hy and H. A simplified argument of this implication was communicated to us
by J.-P. Anker. The fact that we are able to get such a bound up to log factors in higher
rank in case of Hy extremally singular suggests the possibility of a version of the endpoint
Kunze-Stein phenomenon holding true in higher rank for bi- K-invariant functions supported
near extremally singular elements.

We now present J.-P. Anker’s argument. For the purposes of this subsection, we shall
deviate slightly from our earlier notation. We define:

Suy = Kexp(Bs(H, 1)) K.
Let Hy, H € a,. We first claim that
eHSHo,T C eH+ZSH0,27°

for any Z € By(0,r). This follows from the triangle inequality Lemma 5.4. More specifically:
suppose z € e Sy, . Then
d,

g, ("7 2) < ds, ("7, eM) + dg, (7, ).
The first term on the RHS lies in B,(0,7), and the second term lies in B,(Hy, 7). Therefore
the sum lies in B,(Hy, 2r) as we wished to show.

This in turn implies that
(48) VOl(GHSHO,T N SHo,r) S VOl(gSHOQT N SHo,r)

for all g € Sp,. To see this, we first note that by the previous paragraph we have that
vol(e" Sy, N Suyr) < vol(e# T2 Sy, 5. N Sy, ) for any Z € By(0,7). Any element g € Sg,
can be expressed as ke 2L for some k, k' € K and Z € B,(0,r). However, the sets Sy, ,
are bi-K-invariant, so vol(gSw, 2- N Swy.) = vol(e# 2 Sy, 0. N Shy.r)-
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We can re-express (48) as
Vol(eHSHM N Suyr) sy r < ]lSHoj,n * ]lgH()vQT'
We now apply the endpoint Kunze-Stein property to obtain:

vol(e" Sty r O Sty )Ly, 200 < s, 2.1 [, 20121
Finally we have the elementary estimate

syl = €71

for all 1 < ¢ < co. This implies vol(ef Sy, . N Sk, ) < e/ZHo—H),

6.3. Reduction to a spectral estimate. We now return to the usual notation for .Sy, i.e.,
as defined in (27). Let ¢ € C2°(a) be a non-negative W,-invariant function such that ¢ > 1
on B,(0,€). Let v, be the translate of v by tHy, given by ¥, (Z) = ¢(Z — tHy), which
satisfies hy > 1 on By(tHy, €p). We then define k; € C2°(G) to be the bi- K-invariant function
that satisfies k;(efl) = > wew/ wy, Yt(H), which likewise has the property that k; > 1 on S;.

We have vol(S; N ef1S;) < (k; x kY)(ef?), so that it suffices to estimate the convolution
K x k. We shall do this using the Harish-Chandra transform, by writing

(49) (ke * k') (e™) =/ ko) Pioa(e™)]e(N)| 2 dA.
ol
We shall bound this expression using Theorem 2.3, together with the following result which
is obtained from that theorem through a uniform integration by parts argument. We recall
the function ©(H, \) appearing in the statement of Theorem 2.3, defined in (4).

Proposition 6.1. Let G be a non-compact semisimple Lie group with finite center. Let
Hyea,. For any N > 0 we have

E(\) < (14 X)) NertHo (¢ Ho, ),
uniformly in t.

Applying Theorem 2.3 and Proposition 6.1 in (49), we obtain

(ke * k) (") < erCHHo= ) / (1 + [[Al)"NO(tHo, \)*O(H, A)|c(A)]|2dA.
o

Note that (k; x kY)(e”) = 0 if t < ||H||. We must therefore prove the following estimate of

the elementary spectral integral.

Proposition 6.2. Let G be a non-compact simple real Lie group . If Hy € a4 is such that
D s rea 15 semi-dense in Preq, there exists an integer k € Z>o such that

(50) / (1+ M) "NO(tHo, A)*O(H, A)|c(X)|*d\ < (logt)*

+

Jor |H|| < t.

The combination of Theorem 2.3 and Propositions 6.1-6.2 then implies Theorem 2.2. The

remainder of the paper is dedicated to proving these three key ingredients.
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6.4. Proof of Proposition 6.1. We let A denote the Laplacian on the symmetric space
X = G/K. Recall that for A € a* we have Apy = (||p||*> + [|A]|?)ea, see [Hel00, p.427, (7)].
Let N be a positive integer. Integrating by parts (using Green’s second identity) N times
we obtain

k(N = (lol” + |M|!2)N/th(fc)ANcpx(r)dfc= (lell* + HAHQ)N/XAth(w)soA(:v)dg-

Here we have identified the right K-invariant functions k;(g) and ¢_,(g) with the corre-
sponding functions on X, which is the space on which A is defined. Since the integrand is
also left K-invariant we can use the integral decomposition (11) to write

(51) RN = be(llol + AN / ANy (e) o ()T (H)H.

a4

Proposition 6.1 will follow from the following bound on ANk,.

Lemma 6.3. Let k; be as defined in §6.3. Let B C a be a Wys-invariant compact subset
such that supp(v)) C B. Then, for all H € a and all N > 0,

ANky(e") <y > 1p(H —wtHy),
U)GW/WN[

uniformly in t > 0.

To see how Proposition 6.1 follows from this, if we insert Lemma 6.3 and Theorem 2.3
into (51), we find

k(N < (1+ H/\H)N/ e ") J(H)O(H, \)dH.

(tHo+B)Nas

For ¢ large, the integrand is roughly constant of size e?*#0)Q(tHy, ), yielding the statement
of Proposition 6.1

We now turn to proving Lemma 6.3. We will prove this by working in radial coordinates.
Let xy € X = G/K be the point corresponding to the trivial coset K. Let A.,q denote the
radial part of A relative to the K-action on X with A, .zy as a transversal manifold, where
A, = exp(ay). Then by the bi- K-invariance of k; we have Ak;(ef) = Apaqki(efl).

We recall the expression for A,,q from Ch. II, Proposition 3.9 of [Hel00]. Let A, denote
the Laplacian on the flat manifold A.xz¢ C X, which is isometric to a. Then

Avaq = Ay + Z me(coth ) Xy,

acdt

where m, = dimg,, and the element X, € a, defined by (X,, H) = a(H), is viewed as a
differential operator on A.ry. Instead of working on A.x,, we can equivalently work on a
instead, and shall thus instead view A, and X, as differential operators on a.

We define the translated operator AL, = Ty, AvaaTin,, where Ty denotes the operator
of translation by H. Explicitly, AL , is given by

Al =2g+ > mgcoth(a(- — tHy)) X,

acdt
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Thus
k(™)=Y W(wH—tHy) = >  Tigo(wH).

wEW/WM wEW/W]w
Therefore,
Ak = Y (DAY wH) = Y (AL e)wH — tH,).
wEW/W]u wEW/WM

It therefore suffices to prove that At:ﬁz/z <y 1p uniformly in t. This follows from the

following lemma. '

Lemma 6.4. Suppose B is a bounded subset of C>(a)"V™ whose elements are supported in
a compact set IC. If tg > 0 is such that the functions H — o(H —tHy) are all non-vanishing
on K fort >ty and o € ®F \ @y, then the set s, AlaB is also bounded in C*(a)"™.

rad

Proof. The operator Al , has singularities along the root hyperplanes corresponding to roots
in ®;,. To deal with these, it will be convenient to also introduce the symmetric space

Xy = M/K)y, with Laplacian A ;. The radial part of Ay, is given by

Aprrad = Ag + Z me coth(a) X,

agdy;
so that
Al = Apfraa + Z me coth(a(- —tHp))X,.

+
acdt\dy,

The advantage of doing this is that we have written A! ; as the sum of the radial part of
the smooth operator Ay, and the operators coth(a(- — tHp)) X, for a € ®F \ &}, which
are non-singular on functions supported on any fixed compact set satisfying the hypotheses
of the lemma.

We shall prove that Ajpy,aq is bounded on C%°(a)"» by reducing to the boundedness of
Ays. To do this, we define the restriction operator R : C°(X )%™ — C°(a)"™. Helgason
[Hel0O] proves in Ch. II, Section 5, Theorem 5.8 that R is an isomorphism of topological
vector spaces, and therefore has a continuous inverse which we denote by E : C°(a)V¥ —
O (X))

We have Apaa = Ro Ay o E| and as the operators E, R, and A); are all bounded
on C®(a)" or C°(X )", we see that Aps,aq is also bounded on C°(a)"™ | and thus
Ut>t0 ApraaB is a bounded set.

For any choice of & > 0, we have that for every n there exists a C,, such that |-£- coth(z)| <
C,, for x € (¢,00). Therefore, by the product rule, we conclude that

U ( Z me coth(a(- —tHO))Xa>B
2t acdt\07;

is also a bounded set. [l
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7. SEMI-DENSE ROOT SUBSYSTEMS

We begin by introducing a property of root subsystems, which will be a key element in
the proof of the bound on intersection volumes in Theorem 2.2.

Throughout this section we suppose ® is a reduced root system of rank n in a vector
space V with A as a base of simple roots. We say that a root subsystem of ® is standard
if it is the root subsystem generated by a subset of the simple roots, and we say that it is
semistandard if it is the image of a standard root subsystem under an element of the Weyl
group. Semistandard root subsystems can be characterized as those arising as ® NV’ where
V"’ is some subspace of V' (Chapter VI,§1, Proposition 24 of [Bou02]).

Definition 7.1. Let ® be an reduced root system. We say that a semistandard root subsystem
®y C P is semi-dense if, for every semistandard root subsystem ¥ C ® we have

1
(52) |U N Dy| + rank(¥) > §|\If|

Remark 7.2. Suppose ® = &M ... 1P with each &) irreducible. Suppose &) admits a

semi-dense root subsystem q)(()l). Then the subroot system @él) U®@ - - -ud™ is semi-dense
in O.

In this section, we will show that the root system corresponding to an extremal element
is semi-dense in the above sense (Proposition 7.5) and that no root subsystem in types
Es, Eg, Fy, Gy is semi-dense (Lemma 7.7). The latter negative result accounts for the exclu-
sion of such root systems in Theorem 1.1.

Remark 7.3. We emphasize, however, that classical root systems can admit semi-dense root
subsytems not arising from extremal elements. Most notably, this is the case for maximal
semistandard root subsystems &, C ®, when ® is type A,,. The class of root subsystems
arising from extremal elements is a convenient choice though because the corresponding
semi-dense root subsystem minimizes how many ¥’s achieve equality in (52), which in turn
will minimize the power k of logt appearing in Theorem 5.1 (see Lemma 8.8). Furthermore,
they have the biggest Weyl group which ultimately minimizes the number of hyperplanes to
be avoided in the spectral bound (Theorem 4.1).

7.1. Classical root systems. We first focus on root systems of classical type, i.e., A,, B, Cp
and D,,.

Definition 7.4. Let ® be a rank n root system of classical type. We say that a root subsystem
D of ® is extremal if it is of rank n—1, irreducible, semistandard, and in the same family as
O (with the conventions that By := Ay, Cy := Bs, and D3 := As). All such root subsystems
arise by first taking a standard extremal root subsystem and then applying to it some element
of W.

It is clear that extremal root subsystems are simply root subsystems obtained by applying
an element of W to a root system corresponding to an extremal element in the sense of
Section 3.6.

Proposition 7.5. Suppose ® is an irreducible root system of classical type. Then any ex-

tremal root subsystem is semi-dense.
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Proof. Let &y C @ be extremal and let ¥ C ® be semistandard. In fact, it will be enough
to verify Definition 7.1 with ¥ standard. Indeed, writing ¥ = wWy, where Uy C & is a
standard root subsystem, we have |¥ N ®q| = |Wy Nw ' Pg|. Since rank(¥) = rank(¥y) and
|w™®| = |®g|, inequality (52) is true for ¥ if and only if it is true for W.

We now let U be an arbitrary standard root subsystem of ®. To prove the proposition, it is
enough to establish the inequality (52) for each of the irreducible factors of ¥. We may there-
fore assume that W is irreducible. Moreover, we may assume that ¥ ¢ & since otherwise
the inequality (52) is obviously true: |¥| 4 rank(W¥) > |¥|/2. We shall assume throughout
the remainder of this proof that U is standard, irreducible and not strictly contained in ®q.

Our strategy is to reduce the verification of (52) to the base case ¥ = &, which can be

checked numerically. In this case we must verify
1
(53) |Do| + rank(P) > §|<I>|7

which can be checked by inspection of the following table:

type of @ | type of @ |D| | Do (53) true?
A, An n(n+1) (n—1)n yes
B, B, 2n? 2(n —1)? yes
C, Ch_1 2n? 2(n —1)? yes
D, D, 2n(n —1) | 2(n —1)(n — 2) yes

It remains then to show that when W # & then W N @ is extremal in ¥, in which case we

can apply the base case to conclude. (We will in fact encounter the degenerate setting when

U is a singleton set, in which case W is of type A;, ¥ N &5 = (), and the inequality (52) is

trivially verified, since 0 + 1 > % -2.) It will be enough to prove this claim for ¥ maximal.

Note that maximal standard subsystems correspond to removing one simple root from A.
We divide the proof of the above claim according to the root type.

Type A,. The root system of type A, has a model as vectors in R"™ of the form e; — e,
with i # j. Let V' be the subspace spanned by the roots (i.e., the hyperplane orthogonal to
e+ -+ eny1). A basis of simple roots is e; — e, ..., e, — eny1. Let @) be the extremal
root subsystem generated by es —es, ..., e, —e,11. This is exactly the intersection of ® with
the hyperplane orthogonal to e;. All extremal root subsystems are of the form ®, = wdy,.
There are precisely n + 1 of these each of the form ® N {(e;,z) = 0} for some 1 < j <n+1.

Suppose &y = @ N {(e;,z) = 0}. We wish to show that &, N ¥ is extremal in W. For
1<l<n+1let VZ"“ and VV[”rl denote the linear subspaces of R™*! generated by e, ..., ¢
and €11, ..,ent1, respectively. Then U = (U N V") x (U 0 W) = ¥ x U, for a
suitable 1 <1 <n + 1. Then ¥; and W, are of type A;_; and A,,_;, respectively. Moreover,
Oy NV equals either ¥, o x Wy or ¥y X Wy, depending on whether j <[ or j > [ 41, where
Vo = VrN{(ej,x) = 0}. By above discussion, ¥}, is extremal in ¥y, and thus &, N ¥ is
extremal in W.

There are at most two simple roots in ® which are not orthogonal to e;, namely e;_;—e; and
ej—e;r1 (if 7 = 1 or n+1, then there is only one simple root not orthogonal to e;). Since W is
not contained in @, it contains a simple root not orthogonal to e;. Without loss of generality,
we may suppose that &5 N U is generated by the simple roots ex — €1, .., €x10-1 — €rir
with £ < j < k + /¢ (and in particular is of type Ay). If j = k or k + ¢, then it is clear
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that &y N V¥ is extremal in W. Otherwise, we can instead take as our basis for ¥ the set
€j — €k, €k — Ck41y---5,€5-1 — €j41,€541 — €549, ., €qr—1 — Clyy- Then q)() N ¥ is the root
subsystem obtained by removing e; — e from the above basis. Thus the intersection is
extremal (and in particular it is of type Ay_1).

Types B, and C,. The B, and (), cases are virtually identical, and thus we just discuss
B,,. The analysis is in turn very similar to the A, case. We have as a model of our root
system vectors of the form +e; &+ e; with i # j and +e; inside of R”. We may take as basis
€1 — €3,y — €3,...,6h_1 — €n, €. Let @ be the extremal root subsystem generated by the
€a—e€3,...,6,_1—€n,e,. Thisis exactly the intersection of ® with the hyperplane orthogonal
to e;. All other extremal root subsystems are of the form ®; = w®y. There are exactly n of
these all of the form ® N {(e;, z) = 0} for some 1 < j <n (because the orbit of e; under W
is exactly vectors of the form =e;).

Suppose &y = N {(e;, z) = 0}. If ¥ is obtained by removing one of the first n — 1 simple
roots, we again have ¥ = (U N V") x (PN W) =: ¥y x Uy for some 1 <1 < n, but with
¥y now of type B,,_; or C,_;. The claim then follows as in the A, case. If ¥ is obtained
by removing e,, then ¥ is the usual A, _; root system in R"™ and we are also back in the
previous case.

If 7 = 1 then e; — ey is the only simple root not orthogonal to e;. If 1 < j < n —1,
then e;_; —e; and e; — e;41 are the only simple roots not orthogonal to e;. If j = n, then
en—1 — €y and e, are the only simple roots not orthogonal to e;. Since ¥ is not contained
in @y, it contains a simple root not orthogonal to e;. Thus, either ¥ is of type A, in
which case the analysis is exactly the same as before, or it is of type By, namely we have

€k — €kils- -y En_1 — €p,en. If 7 # n, then we can perform the same trick as before, i.e.,
choose the basis e; — ex,ex — €ry1,...,€j-1 — €j41,...,€n—1 — €y, €y to conclude that the
intersection is extremal (in particular of type By_1). Otherwise suppose j = n. Then we
take as our basis: e, — eg,€x — €xi1,..-,€n_2 — €n_1,€,_1 iN Which case we again see that

the intersection is extremal.

Type D,,. The type D,, root system has a model as vectors in R" of the form +e; + e; with
i # 7. We may take A = {e; —eg, €9 —€3,...,6,1 — €y, 6,1 + €, }. Let &( be the standard
extremal root subsystem obtained by removing e; — e from A. Then &) = &N {(ey, ) = 0}.
All other extremal root subsystems are of the form ®; = w®j; each such one can be expressed
as ® N {(e;,z) = 0} for some j.

Suppose &5 = & N {(e;,z) = 0}. If ¥ is obtained by deleting one of the first n — 2 simple
roots, then we proceed as before by looking at the intersection of ¥ with V;* and W}* (now
U, is of type D,,_;). If ¥ is obtained by deleting the last simple root, ¥ is just the usual A,
in R™ and we are back in the first case. Finally, if ¥ is obtained by removing the second to
last root in A, then V¥ is also of type A, _1 but with basis e; —es,...,€,_0 —€,_1,€p_1+ €.
But since {{e,,z) =0} = {(—e,,x) = 0}, we are again back in the first case.

If 7 =1, then e; — ey is the only simple root not orthogonal to e;. If 2 < j <n — 2, then
there are exactly two simple roots not orthogonal to e;. If j = n — 1, there are three simple
roots not orthogonal to e;, namely e,_9 — €,_1,€,-1 — €p,€p—1 + €. If j = n, there are two
simple roots not orthogonal to e;: e,_1 — e,,€,-1 + €,. By the same style of analysis as
before, it is clear that if 1 < j < n — 2, then we are done.

Now suppose j = n. Suppose first that ¥ does not contain the simple root e, 5 —e,_1.

Since W is irreducible and is not contained in ®, it follows that ¥ is the singleton set
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consisting of either e, ; — e, or e,_1 + e,. This is the degenerate setting referred to earlier,
in which (52) reduces to 0+ 1 > % - 2. Otherwise, ¥ contains e,,_o — €,_1, in which case ¥
contains one or both of e,,_1—e¢, and e,,_1+e¢,. If ¥ contains only one of these extremal roots,
then W is of type Ay, and the same style of analysis as before shows that ¥ N @ is extremal
in W. Otherwise ¥ contains both e, 1 — e, and e,_1 + €,. In this case W is of type D, with

corresponding simple roots e —€gi1, ..., €n_9—€n_1,€n_1—€pn, En_1+€, (With { =n—k+1).
We can instead choose the basis e, — ex, ex — €xi1,---,€n-3 —€n_92,€n9—€n_1,6n_2+ €n_1.
It is then clear that W N ® is extremal in ¥ (i.e., it is of type D,_1, with the convention that
D2 = Al X Al)

Finally suppose j = n—1. Suppose first that ¥ does not contain the simple root e,,_s—e, 1.
Then, like the j = n case, W is the singleton set consisting of either e, 1 — e, or e,_1 + e,,
in which case we conclude as before. Otherwise, ¥ contains e,_s — e, _1, in which case ¥
either contains exactly one of e¢,,_; — e, and e,_; + e, or contains both. In the former case,
we are again back in the type A case. Otherwise, ¥ contains both e,_; — e, and e,_1 + ¢,
and is of type Dy with corresponding basis ex — €gi1,...,€n_2 — €n_1,6p_1 — €y, En_1 + €p.
We instead take the basis e, 1 — €xi1, €511 — €ki2y. .., En_2 — €k, €x — €y, € + €. It is then
clear that W N @y is extremal in ¥ (again with the convention that Dy = A; x A;). O

Remark 7.6. We shall show an example of a classical root system ® which shows that, if we
do not take ¥ to be extremal, then (52) might not hold. Let ® be of type Bs, and let ¥ be
the standard A; x A; root subsystem. Then ¢ has 18 roots, and ¥ has 4 roots. We thus see
that [® N ¥| 4 rank(®) = 4 + 3, but this is smaller than 1|®| = 9.

7.2. Exceptional root systems.

Lemma 7.7. Suppose @ is of type Eg, Es, Fy or G5. Then there exists no semi-dense root
subsystem.

Proof. In the case of G5 this is immediate: the only root subsystem is of type A;, and if we
take W = ® we see that the inequality fails (G2 has 12 roots).

The case of F} is also straightforward: one may check that if we take ¥ = & (which has 48
roots) and @, to be any standard proper root subsystem, then the desired inequality fails.

The type E cases are more subtle and the desired inequality “just barely” fails to be true
(and in fact it holds for Er!). If we take for ®y the E; standard root subsystem in Fjg, or
the Ds standard root subsystem in Ejg, then the desired inequality in fact holds for any ¥
standard. Thus constructing counterexamples to (52) is more complicated.

We start with the case of ® being the Fg root system. There are three extremal nodes of
the Dynkin diagram of ®; removing these result in root subsystems of types E7, A7, and Ds.
Recall that Eg has 240 roots. If we take @, to be of type D7 (which has 84 roots) or type A7
(which has 56 roots), then the desired inequality fails if we simply take W = ®. Similarly,
if we take @y to be any other standard root subsystem other than type F; (which has 126
roots), then the desired inequality fails. So our only chance is to take ®y to be of type Ex.

We can take as our model for @ the elements in R® of the form +e; +e; with i # j as well

as £3e1 + 1ep £ -+ & g with an even number of minus signs (sum of coefficients is even).
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We can take as our basis of simple roots:

{e1 — ez, 69 —€3,63 —€q,e4 — €5,€5 — €5, 6 — €7, €6 + €7,

1
—?m+®+%+m+%+%+&+%ﬂ

Let &g be the E; standard root subsystem which is obtained from removing e; — e5 from the
base. This is exactly the intersection of ® with the hyperplane orthogonal to e; — es.

Let w € W be the element switching ez and eg. Then w®, consists of roots orthogonal
to e; — e3. Consider the standard root subsystem W generated by e; — e and ey — e3. This
generates an A, type root system. However, no root in this root subsystem is orthogonal to
e1 — es. Therefore w®y N ¥ = . Thus |[wPy N V| + rank(¥) = 2 but 1|¥| = 3. Thus the
desired inequality does not hold for Eg.

Now suppose ® is of type Es. Recall that Eg has 72 roots. Removing an extremal node
from the Dykin diagram gives root subsystems of type D5 (with 40 roots) and As (with 30
roots). Both of these root subsystems in fact satisfy (52) in case ¥ = ®. However, any other
root subsystem other will fail to satisfy (52) by again simply taking ¥ = ®. Thus we must
only analyze further the cases of A5 and Ds.

Recall that the Ay root system has a model as vectors in R? of the form (1, —1,0), (1,0, —1),
(0,1,—1) or their negatives. We may take as our model of Fg those vectors in R? = R? x
R3 x R? where we separately take a copy of A, inside of each of three copies of R3, together

with vectors of the form (A; B;C) where A, B,C € {(%, —%,—%), (—%,%, —%),(—1 —1 2
and vectors of the form (A’; B'; C") where A, B, C" € {(—%, %, H, (%, —%, %), (% %, —%)} We

3 37
can take as our simple roots

{68 — €9, €7 — €8,€65 — €6,€4 — €5,C2 — €3,
1 2 1 2 1 1 2 1 1
561 — geg + 563 — 564 + 565 + 566 — 567 + 568 + 569}.
These roots are all orthogonal to e; 4+ es + e3,e4 + €5 + eg, and e7 + eg + eg.

First we let &y be the standard root system of type As. This is obtained taking the root
subsystem generated by the simple roots with e; — e3 removed; equivalently these are the
roots orthogonal to e; — e3. Let w € W be the element switching e; and e;. Then e; — e3 is
moved to e; — ez, and wPy is those roots orthogonal to e; —e3. Let U be the root subsystem
generated by the last two simple roots in the list above. Then W is of type Ay. However no
vector in W is orthogonal to es — e3. Therefore |w®y N ¥| = 0, and we see that (52) fails.

Lastly we consider ®( of type Ds. We shall use a different model for Eg than the one
above. Specifically, we shall take ® to be the root subsystem of Eg obtained from removing
the simple roots e; — ey and e; — e3 from the base of Fs. Then & is the root subsystem
orthogonal to e; — e and e; — eg. Let &y be the root subsystem of ® obtained by further
removing the element e — e, from the base. These are the roots which lie in the intersection
of the space containing ® with the hyperplane orthogonal to e; 4+ es — 3e3 + eg. Let w € W
be the element which switches e and eg. Then w®, is orthogonal to e; + es — 3eg + eg. Let
U be the standard root subsystem generated by eg + e; and —%(el + -+ + eg); then W is of
type As. However, no element in W is orthogonal to e; + ey — 3eg + eg, so wdy NW = (.
Thus, like before, (52) fails to hold. O

Lemma 7.8. Let ® be of type Er, and let ¢ be an extremal root subsystem (necessarily of

type Eg). Then ®¢ is semi-dense.
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Proof. We have as a model for the E7 root system those vectors in R® of the form e; — e,

with 7 # j as well as all permutations of (%, 5,2 2 —1 1 1" 1y A base of simple roots
is given by

27202027 207 2T 2y 3

{—ex+e3,—e3+es, —es+e5,—e5+ e, —€5 + €7, —e7 + €3,
5(61+€2+63+€4—65—66—67—68)}.

Notice that all of ® is orthogonal to (1,...,1). Let ®y be the standard root subsystem
obtained by removing —e; 4 eg from the base; then @, is of type Fgs and exactly consists of
those roots orthogonal to e; + eg.

The Weyl group of E; has order 2'°.3%*.5.7, and that of Eg has order 27 - 3*.5. By
the orbit-stabilizer theorem, we get that the W-orbit of e; + eg is of size 23 - 7. These are
exactly the 22 - 7 vectors of the form e; + e; with i # j, as well as the 22 - 7 vectors of the
form $(eq + -+ +es) — (e; + ¢;) with i # j.

From here it is now easy to formulate a simple algorithm to verify (52). Each standard
root subsystem can be found by choosing a subset of the base, and then seeing which roots lie
in their span. Then for each such standard root subsystem ¥ and each vector v = w.(e; +eg)
in the W-orbit of e; + eg described in the previous paragraph, we see how many roots are
orthogonal to v. This tells us |¥ N w®dy|, and thus we can easily check (52). We carried out
this algorithm in Sage [Ste+23] and found that in all cases (52) was satisfied. O

8. BOUNDING THE ELEMENTARY SPECTRAL INTEGRAL

The purpose of this section is to prove Proposition 6.2. Let r be the rank of G. We define
coordinates on ai by the map z € R, — A(z) = vy, + ... + x,@, € a}. Applying this
change of coordinates, the integral in (50) becomes

(54) /R (L + llzl) = ©(tHo, A(x))*O(H, A())|e(A(x))| ~*da.

r
>0

We shall bound this integral by dividing RZ, into various subregions. As we shall mostly
just work with reduced root systems in this section, we shall simplify notation by dropping
the subscript ®,.q everywhere, so that ®, ®,,, 1, etc. denote sets of reduced roots.

8.1. Barycentric subdivision and corresponding estimates. The first subdivision will
be a barycentric one, whose subregions are determined by an ordering on the x;. Let o € S,
be a permutation, and define T, to be the subset of RL; where x5y > -+ > 2,().

For 1 < < r, define ®,; to be the set of roots orthogonal to @, (1), ..., @s(;). In particular,
®,, = 0. We furthermore set &, = ®. We observe that ®,; is simply the standard sub-
root system consisting of all roots expressible as linear combinations of simple roots in

AN {Oza(l), ce ,Ozg(i)}.
Lemma 8.1. Let 1 <i <. Ifa € @i g \ Doy, then (M), )| X 24 on T,

Proof. We may assume that o € ®*. Let eq,...,e, be the standard basis for R". If z € T,
then v = z,0)€,0) + ... + To o) With z,q) > ... > 25¢). We have (o, w,y(;)) = 0 for
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1<j<i—1,and (o, wy() > 0 for i <j <r, so that
(A@), @) = (To()To(1) +*** + To(n-1)To(r): @)
= To(i) <wa(i)7 Oé> Tt Lo(r) <w0'(7’)7 Oé> = Zo (i),
as required. O

We now use Lemma 8.1 to estimate the various terms appearing in (54) on 7.

Lemma 8.2. Let 0 € S,. Then, for x € T, and ||H|| < t, we have

(55) O(H,\(2)) < Hmln (t,x_ () + 1)"1’571\4‘1’;'.
=1

Furthermore we have

(56) O(tHo, A7) < Z Hmln T 1)na (o),

weW =1

where, for 1 <i <r, we have put ny(o,i,w) = [(®T N OF,) Nw(P, ;1 \ D,,)|. Finally, we
have

T - .
(57) @) < (1 + ) [ 220520

i=1
where d := Zaeq,Jr Mo + Moy 1S the sum of the multiplicities of all relative roots.

Proof. We begin with @(H /\(x)) We first apply the trivial estimate a(H) < ¢, which gives
<<2Hm1nt|w)\)>|l 1).
weW aedt+

We next break the product over ®* into the subsets ®* Nw(®, ;-1 \ ;) and apply Lemma
8.1 to each subset, which gives

T

H min(t, [(wA(z), )|t +1) < H H mln(t,xa( )T 1)

acdt i=1 a€¢°+ﬂw(‘1>ai 1\<I>07i)
+ +
_Hmln t .I’ +1)|q>o'z 1| ‘q)oz‘

yielding (55).
Next, we handle the c-function bound. When [(A(z), a)| is small, by (19) we have that
lea(A(@))] 72 < [(A(@), a) .
When |(A(x), )] is big, by (20) we instead have that
[ca(A@))] 7 << J(A(@), a2 < (14 @)

We can combine these bounds and say that for all A(z) € T, we have

le(M@)| 7 < (L +20w) T 10N

acdt

Applying the same argument used to prove (55) we find (57).
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Finally, we apply a similar argument to O(tHy,\), with the added observation that
a(tHy) = 0 for a € ®F,. These roots therefore make no contribution to the formula for
O(tHo, \), while for o € &+ \ &}, we have a(tHy) < t as before. It follows that

O(tHo, Az)) < Y ] min(t, [(wA(z),a)| " +1).

weW aeqﬁ\q)xl
As before, we partition ®* \ @}, into the subsets (®* \ &) Nw(P, ;1 \ D,;). This gives

H min(¢, [(wA(z), a H H min(¢, a:;(li) +1)

acdt o}, = a€(<1>+\€I>L)
Nw(Psi—1 Ps,i)

yielding (56). O

8.2. Refined subdivision and corresponding estimates. We now refine the estimates
in Lemma 8.2 based on which of the z,(; are larger or smaller than t=' For 0 <[ < r we
let

{reT,: 1> :Eg(l)}, [l =0;
Too={zel, z,q >t >zo04n}, 1<1<r—1;
{x el,: To(r) > t_l}, =

Note that [ records how many x,(;)’s are bigger than ¢!
It will be convenient to introduce the following notation.

Definition 8.3. Foro € S,, we W, and 1 <i<r, let
su (0,6, w) = |q>:,i—1| - |(I):1| — 2np(0, i, w),
where nyr(o,i,w) was defined in Lemma 8.2. For 1 <i<r+1 put
Sy(oyi,w) = ]CD;Z| —2|(®F \ ®F,) Nwd, .

In particular, since ®,, = 0, we have Sy(o,r + 1,w) = 0, and since ®,¢ = ® we have
Su(o,Lw) = [@F] = 2/(@F \ OF)| = [0F] — 2(|2F] — [OF,]) = —[@F| + 2|2y

Lemma 8.4. Let o € S,, w e W, and 1 <1 < r+ 1. There exists an N’ such that for
ANz) €T, and |H|| < t we have

O (tHo, ) POUH, A < (1 2o (3 7500 [ [y,

weW i=1

where here, and throughout, a product from i =1 to | is assigned the value 1 when | = 0.
Proof. On T,,; we have z,(; > ¢! for i <l and z,q) <t ! fori > 1+ 1, and so
min(¢, x;(z.) +1) =< :z:;(i) +1= x;(i)(l + 2,0)), 1<,
min(t, x5 +1) =t <t(l +250), @>1+1L
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As a result, we deduce from the bound (55) for ©(H, \) that
Rl \‘DL R
O(H, (7)) < (14 x5q))"™ 17 H "
Likewise, the bound (56) for ©(tHy, A) becomes

Ot ) (12351 318" 500t T e

0'(1
weW

We simplify the bound (57) for |c(A(z))]| ™2 to

) d 2l t 210}, |29 |
(M) 72 < (1 + 25172 Z'Hm 1 :

Combining these estimates yields the lemma. 0

For 1 <[ <r, we put

(58) IM,o,l,w(t) = / 1 + Zo(1 N H jlzl)al’w)dﬁa(l) S d:L’U(l)
o(1)> >x0<l)>t 1

and set Iy 0.(t) = 1.

Corollary 8.5. In the above notation, and under the conditions of Lemma 8.4, we have, for
N" much bigger than N’,

/ (1+ z0)) N O(tHy, M) O (H, M) |e(Mx))| 2de < Y 4751y ().
To,

weW

Proof. From Lemma 8.4 it follows that the left-hand side is bounded by

Z t—S]V[(O’,l,w) / ]_ —|— xo‘(l) -N H (L‘Z i)(O"L’LU dxo—(l) “e dxo—(r)-

weW Tt i=1

When [ = r this gives the stated bound. For 0 <[ < r — 1, we perform the integrals over
the variables which don’t appear in the product, to find

7 ot Lo (r) e o -
/ / C / dxa(l+l) . dIo-(r) < / c. / dxo-(l+1) R dxa(r) =t 7’7
0 0 0 0 0

as desired. 0

8.3. Intersection cardinalities of root systems. Before proceeding to estimate the in-
tegrals appearing in Corollary 8.5, we establish a few important properties of the quantities
sy (o, i, w) and Sy(o, i, w) appearing in Definition 8.3.

Lemma 8.6. Let 0 € S, w € W, and ®,; a standard sub-root system. Then

(1) for 1 <i <r we have Sy (0,0, w) + sy (0,4, w) = Spy(o,i — 1, w);
(2) for 0 < i <r we have Sy (0,1, w) = [Py NwPe;| — 5| Pyl
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Proof. For point (1) we have
Su(o,i—1,w) — Sy(o,i,w) = |®;i_1| —2[(®F N D}, Nwd,,; 4|
= (1251 = 2[(27 \ @) Nw,])
= |Dg; 1] = g, + 227 N @3) N w(Poiog N Do)
= sy (0,0, w).
For point (2) we calculate
Su(o,i,w) =07, = 2[(®F N &F) Nwd],
= 2%~ (@ @yr) N

1
= §‘q)a,i| — (|wDgsi| — [Prr MWD, ),
which simplifies to the stated identity. U

Corollary 8.7. Suppose that ® is of type A,, B,,Cy, D,, or E;. Let Hy be extremally
singular with corresponding root system ®p;. Fiz o € S, w € W, and 0 < i < r. Then
Sy (o, i,w)+1r >i.

Proof. We apply Lemma 8.6(2), and then Lemma 7.5 and Lemma 7.8, with &, = ®,, and
U = U)(I)U,i. O

8.4. Integrating over the refined subdivision. By contrast with the preceding steps, in
which Hy was allowed to be arbitrary, the remainder of the argument will rely critically on
the extremal hypothesis on the directing element H,.

Recall the integral Iy;,;.,(t) defined in (58). When combined with Corollary 8.5, the
following lemma completes the proof of Proposition 6.2.

Lemma 8.8. Let G not be of type Eg, Es, Fy, or Go. Let @, be the root system corresponding
to an extremally singular Hy. Fiz o € S,, w e W. For1 <1 <r we let

ev(ol,w) =#{1 <i<1l:Sy(o,i,w)+r =1}
and put epr(0,0,w) = 0. Then
thM(ml,w)Jrlfr[M’U’l’w (t) < (log t)eM(U’lv'w)?
the implied constant depending only on the integer N appearing in the definition of Ins 1. (t).

Proof. For notational simplicity, we drop the dependence on w, o, and M in the notation
Ingow(t), Su(o,l,w) and sy (o, i, w), writing simply £;(¢), S(I) and s(7) for these quantities.
In particular, S(r) = 0.

For [ = 0, recall from the discussion preceding Corollary 8.5 that, by convention, Iy(t) = 1.
We must therefore show that S(0) +r > 0, which follows from Corollary 8.7.

For 1 <[ <7r we let

l
Jl(t) = / (1 + :L'U(l))_in((ll))ﬁul H :I?Z((Zi))d.ilﬁa(l) e dxg(l,l).
xa(l)>"'>$g(l)>t71 =1

47



As was the case for I ,;.,(t), we do not indicate the dependence on N in the notation, and

we shall allow N to be taken sufficiently large. From the inequality (¢~1)30+— < xf((f)j;_l,
it follows that t =W+ ="[,(t) < J;(t). We shall bound J;(t) by induction.
The base case is when [ = 1, which we handle first. Since N can be taken sufficiently

large, and S(1) + s(1) = 5(0) from Lemma 8.6(1), we have

0 1 1
JZ(t) _ / (1+x0(1))—Nx§((11))+8(1)+r 1d£lfg < / :L,U((l))Jrs(l +r— 1d$a(1) _ / xi((%)Jrrfldaja(l).
t +—1 +—1

—1
From Corollary 8.7 the exponent satisfies S(0) +r —1 > —1. If this exponent is > 0 then we
may extend the lower limit of integration to 0 and obtain a bound of 1. When the exponent
is —1, the integral is bounded by logt. This establishes the lemma when [ = 1.
We now assume that 2 <! < r and aim to show that

Sl—1)+r>1-1;

0
59 Ji(t) < (log t)*J_(t), where & =4
(59) (1) < (logt)*J,—1(t), where {17 Sl—1)+r=1-1.

For this we consider the inner integral over x,(; in Ji(t). Using the recursive identity S(I) +
s(l) = S(I — 1) from Lemma 8.6(1) we have

PN gyt —i4s(1) Fol=D G 1)
/tl Lo (1) do() = - Lo (1) dZo(1-1)-

From Corollary 8.7 the exponent satisfies S(I — 1) +r — [ > —1, with equality occurring
precisely when §; = 1. If §; = 0, then this exponent is > 0 and we may extend the lower
limit of integration to 0 and obtain a bound of :l:f((fj))Jrr_(l_l), yielding (59). If 6; = 1, then

the inner integration over x,;_1) now gives
o(l—1)
/tl w;(ll)da:a(l) =log x,q-1) — log(t™!) < (1+ To1)) +logt < (logt)(1+ 2401)).

The logt term may be brought to the outside of the integral, and the 1 + ) may be
absorbed, yielding

-1
Ji(t) < (log t)/ (1+ 250 - Hl},(z dze() .. dToa-1).
T (1)>>Te—1)>t 1 i=1

Since, in the definition of J;_;, the power of z,;_1) in front of the product Hz 1T, ’Z)) is

S(l—1)+r— (Il —1) =0 when §, = 1, the integral above is (logt)J,_;(t), establishing (59)
in this case as well.

Remark 8.9. Though our proof techniques show that vol(ef’.S, N S;) < (logt)ker@HHlo—H) for
extremal Hj (or more generally for those Hy for which the roots vanishing on Hj forms a
semi-dense root subsystem), our techniques allow one to more generally obtain a bound like
vol(ef S, N S,) < tlertHo=H) for general H,.

9. BOUNDS FOR SPHERICAL FUNCTIONS

This section contains the proof of Theorems 2.3 and 2.4. Section 9.1 provdes some il-
lustration of these theorems, and explains why Theorem 2.4 should be sharp, and Section

9.2 discusses the relation between these theorems and previous work. Section 9.3 gives an
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outline of the proof of Theorem 2.3, and the proof is carried out in Sections 9.4 to 9.6. We
prove Theorem 2.4 in Section 9.7.

9.1. IMlustration of Theorems 2.3 and 2.4. In this section, we make some remarks to help
the reader understand the significance of Theorems 2.3 and 2.4. This includes explicating
these theorems in the case of SLy(C), deriving some simpler consequences of Theorem 2.3
for a general group, and explaining why Theorem 2.4 should be sharp based on stationary
phase considerations. We also note that the bounds of Theorems 2.3 and 2.4 are equivalent
in the case when G is a complex group and A € a* is bounded, by Lemma 9.5 below.

9.1.1. The case of SLy(C). When G = SLy(C), we have the following explicit formula for
the spherical function. If « is the unique element of &+, we may identify af with C and a
with R using the basis elements « and /2 respectively. We then have

o sin(Af)
(60) ox(e) = 020,

and we may compare Theorems 2.3 and 2.4 with the bounds that may be deduced from
this formula. For simplicity, we shall assume that X is real, and we assume without loss of
generality that A and ¢ are non-negative. In this case, Theorem 2.3 states that

(61) or(e) < (1 4+ N)*min(t + 1, A7 4 1)e ™,

and Theorem 2.4 states

t+1
tA+1

(62) oa(e) < et

We note that these bounds are of the same strength if A is bounded, as established in Lemma
9.5, and it may be checked that (62) is stronger than (61) as expected.

We shall show that (62) is sharp with complete uniformity in ¢ and A. To do this, we
consider the cases tA < 1 and tA > 1 separately. When ¢\ < 1 we have sin(t\) < tA, so that
(60) implies that py(e') < t/sinh¢. On the other hand, (62) gives

or(e') < (t+1)e™" < t/sinht,

which shows that (62) is optimal in this range.
When tA > 1 the best bound one can give for sin(At) is | sin(At)| < 1, and so by (60) the
best bound one can give for ¢y (e') is pa(e') < 1/(Asinht). In comparison, (62) becomes

Lt

t
oae) <e o

and this is equivalent to py(e’) < 1/(Asinht) as one sees by applying the asymptotic
1/sinht < e *(t+1)/t.

The bound (62) reflects the fact that the decay of ¢g(e') = ¢/ sinh(t) < te~" is slower than
that of ¢y for A # 0, and moreover that this transition starts to be observed at the point €'
when A\ < 1/t. Theorem 2.4 can be viewed as an extension of this bound to a general group,

where the function (¢ +1)/(tA + 1) is replaced by a product of similar expressions over @7 ..
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9.1.2. Consequences on a general group. We next derive some simpler corollaries of Theorem
2.3, both because of their intrinsic interest, and to facilitate the comparison between Theorem
2.3 and previous bounds for the spherical function in the next section. First, we make the
observation that when A is at distance > 1 from the singular set, Theorem 2.3 simply gives

(63) oa(e) < (14 [|A])*max e (s UD,
we
For general A\, we may apply the bound f,(H, ) < |a(H)| + 1 to deduce
4 H 1 a —(p+wSA)(H) H 1).
(64) pale”) < (14 [[Al])*maxe 11 (la(H)| +1)
ac

red
Theorem 2.3 may be viewed as giving an interpolation between these two bounds, based on
how singular A is. We may also apply the bound a(H) < ||H|| to obtain
fo(H,w\) < min(||H|| + 1, [{w, o)™t + 1),
which gives
O(H,\) < [ min([H|+1,[(\ )" +1)
acdt,

and therefore

(65)  ale™) < (L A max e”@HeSVE TT min( H|| + 1,[(A a)| !+ 1).
b aE@jed

Finally, we have the following.

Corollary 9.1. Let n denote the maximum size of the sets <I>;Led’M, where M runs over the

mazimal standard Levi subgroups of G. We then have

3 - * - - WS
o3(e") < (14 N1+ [ ) muin(H] + 1, A~ -+ 1) %l - =000

Proof. We shall derive this from (65), by showing that
[T min(H| + 1, [\ @)~ + 1) < (1+ [ H[)? min(| H| + 1, [|A] 7 4 1)Pal =7

+
acd

for any A € af. We are free to multiply A by i, and so we may assume that [|[RA|| > ||Al].
We may also assume that $tA € a’. It follows that there is some maximal standard Levi
subgroup M such that [(A, a)| > [|A]| for all a € @, \ @1, ,, and therefore that

min([[H | + 1, [(A, o) + 1) < min([[H|| + L[]~ + 1)

for v € ®F \ @, ;- This implies

[[ min(lHI+ 1100+ )< [ (HI+) ][] min(lE]+ 137 +1)

ae(b;d O‘E‘I)j_ed,M aeq)j;d\@j;d,M
= (L [[H ) 5 min ([ H | 4 1, A 7 1)l S
< (1+ [ H )" min([[ H| + 1, I\~ + 1)!®real =

as required. O
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9.1.3. Theorem 2.} and stationary phase. We now explain why the bound of Theorem 2.4 is
to be expected, and should be sharp, from the viewpoint of stationary phase applied to the
integral (5). The critical set of the phase function appearing in this integral is understood,
see e.g. Section 1 of [DKV79]. In particular, when X = H € a, the integral in (5) reduces
to one over K/Zk(a), and [DKV79] shows that when H and A are both regular the critical
points occur at W and are non-degenerate. Moreover, for each w € W, there is a fixed
basis for the tangent space T,,(K/Zk(a)) in which the Hessian is diagonal with eigenvalues
a(H)(\, wa), each occurring with multiplicity 2 (Prop. 1.4 of [DKV79]). (The fact that the
multiplicities are 2 is due to G being complex.) By stationary phase, the strongest bound one
can give for the contribution of the integral near w to (5) is therefore (1 + |a(H){\, wa)|) ™},

and summing these over W gives the bound of Theorem 2.4.

9.2. Relation with previous work. We now discuss the relation between Theorem 2.3
and existing bounds for the spherical function. Compared with previous results, Theorem
2.3 has strong dependence on H, but weak dependence on A, at least when A is large. This
is convenient for us, on both counts. It is crucial for the applications in this paper that
our bounds have good dependence on H. On the other hand, the fact that the bound of
Theorem 2.3 is polynomially growing in A does not matter for us, as in our applications there
are always other factors present that decay rapidly in .

On a general group, the problem of giving bounds for the spherical function that are
uniform in H and X is a difficult one, and far from being completely solved. If we restrict
our attention to bounds that hold for all H and A, with A varying over a* or ag, the only
previous results we are aware of are obtained by reducing directly to the case of A = 0, and
as a result do not capture most of the interaction between H and .

To describe these bounds, it follows from Kostant’s convexity theorem that

|oa(e?)] < pole”) maxe
for any A\ € af, see for instance Prop 4.6.1 of [GV88]. Combined with the Harish-Chandra
bound for ¢y (Theorem 4.6.4 of [GV88]), which states that

(6) o) < (14 || H|)/®ealeetD),
we obtain
(67) ox(e?) < (1 + ||H||)|‘I>;;d|m%< o~ (pHwSN) (H)
we
The bound (66) was strengthened by Anker [Ank87] to
o pole) = T] (1+ fa(H) e,
acdt

red

which gives the corresponding improvement in (67) to

H —(p+wSA) (H)
(69) oa(e™) < [T (1 Ja(H)maxe :

+
acd

We note that the upper bound for ¢y provided by Theorem 2.3 is the same as the upper
bound in (68), so that the theorem is sharp in this case. Moreover, (69) is equivalent to the

corollary (64) of Theorem 2.3, if we restrict A to a bounded set in a*(k).
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There are also previous bounds for ¢, (ef') proved using the Harish-Chandra expansion.
Such bounds always blow up along the walls of @, and so they are generally stated for H
in a set of the form Hy + ay for a fixed Hy € a;. To our knowledge, the strongest bound of
this type is proved in work in progress of the second author, and we state it in a simplified
form here. Roughly speaking, it applies a complexification argument to the Harish-Chandra
series expansion of ¢y, similar to the one used in this paper with the expansion of Gangolli—
Varadarajan. As a result, it has better dependence on A, but worse dependence on H (and
does not hold near the walls as mentioned above). To state it, for a« € P4, define the
function ©Y on a x a} by

1| ha)] < (L+1H|)™,
O%(H,A) = { [(A,a)[! L+ D™ < (A )] < 1,
[0, @) -(metma)/2 1 < |3, a)|.

We also define
0" H \) = [] ©%H. ).

+
acd’

Let Hy € ay and R > 0 be given. The bound then states that
oa(e") o r O°(H V|| H "M max e~ (Hsin
we

for A € a*(R) and H € Hy + ay, where n(R) > 0 is a constant that is equal to 0 if R
is sufficiently small depending on (. There is also a version of the result that bounds the
derivatives of ¢, (eff) with respect to H and .

In [NPP14], the Harish-Chandra expansion was used to prove an asymptotic for ¢, similar
to (68) for any A, again subject to the condition that H lies in Hy + a, for a fixed Hy € a,,
and with error terms that are not uniform in A. We have not checked how this asymptotic
compares with Theorem 2.3. We also mention Cor. 4.5.5 of [GV88], which implies a uniform
estimate for ¢, (ef') when H € Hy + ay and A € Ao + a7}, for fixed o € a.

Finally, we assume that G is complex, and discuss the strength of Theorem 2.4, as well as
its relation to existing bounds for the spherical function in this case.

Bounds for ¢, and ¥ in the complex case were studied by Barlet-Clerc [BC86], Clerc
[Cle87], and Cowling—Nevo [CNO1], and may be deduced from the results of Duistermaat—
Kolk—Varadarajan [DKV79]. Theorem 2.4 strengthens these results, subject to the condition
that A is real. However, we note that the papers [BC86; Cle87; CNO1] also obtain results for
complex A, and [CN01] also bounds certain derivatives of py(ef’) in the H-variable.

9.3. Outline of proof of Theorem 2.3. We now give an outline of the proof of Theorem
2.3. We first discuss the case when G = SLy(R), before describing the modifications required
in the general case. As in the case of SLy(C) discussed above, we shall identify a and af
with R and C using the basis elements a¥ /2 and « respectively, where a € &7 is the unique
positive root. Thus we wish to show that there exist a,x > 0 such that

(70) loa(el)] < (14 [\ 2e /23N min(1 4,14+ [A|7Y)

for t > 0 and |3\ < k.
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First, we note that |¢y(e?)| < elSNtpg(et), which follows by taking absolute values in the
Harish-Chandra integral formula and using the fact that H(ke') <t for all k € SO(2). This
implies (70) in the range where t < 1 (or ¢ < R for any fixed R).

Now suppose ¢t > 1. Let 6(t, \) be defined as

(71) O(t, \) := c(N)e + c(=N)e™™,

The asymptotic formula of Gangolli-Varadarajan, recalled in Proposition 3.2, states that
there is k > 0 such that

(72) loa(eh) — e 20, \)| < (14 1)%(1 + |A)%e” 1/2Fe)

for |SA| < k, where a,e > 0 are constants (see Section 5.1 of [GV88] for an illustrative
discussion of the rank one case). We may take these to be the constants a and & in our
bound (70). As the right hand side of (72) is less than the right hand side of (70), it suffices
to show that

(73) 1008, V)] < (14 M)l min(1+¢,1 4 (A7),
for t > 1 and |S\| < k. In fact, we will show the stronger bound
(74) 0(t, \)| < SN min(1 +¢,14 |N7).

In the case of SLy(R), the explicit nature of §(¢, A) means that this can be exhibited quite
directly, and we do this first before describing the argument that must be used in the case
of a general group. We first suppose that |[A| > 1. If we assume that k < 1, we have the
bound [c¢(A\)| <, 1 for |[SA| < k. We thus straight away get

0, \)| < P < BN min(1 4+ |N71 14 1),

as required.
We next suppose that |A| < 1. The c-function is a meromorphic function with a simple
pole at A = 0. Despite this singularity, 6(¢, A) can be extended holomorphically to A = 0. If
we write ¢(A) = a_1 A7 + g(\) where g()\) is an entire function, we have
o _ ikt
A

Because |\| < 1, the last two terms above can be bounded by Ce/S* for some C. The first
term can be bounded in two different ways, as

c(N)eMN + e(=N)e ™ =a_, + g(\)e + g(=N)e ™.

oMt p—idt

A

where the first bound is elementary and the second follows from applying the mean value
theorem to f(z) = € — 7™ on the interval [0,¢]. We thus get the bound

10(8, )] < M min(1 4 A7 1+ 1),

ot p—idt

< 2N LelPMEand < el

as required. This completes the proof of Theorem 2.3 in this case.

On a general group, it will be convenient to use a different method, based on the maximum
modulus principle, to establish (74). To describe it, we first observe that if x < 1, we have

() < 1+ AT
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when |SA| < k, as follows from (20). This implies that
(75) 0, 2) < (L+[A71)el,

which establishes (74) when |A| > t71. We therefore assume that |\ < ¢t~!. For these A,
we shall prove (74) by applying the maximum modulus principle, on the disk of radius 2¢~*
centered at \. This gives

(76) O(t, \) < max0(t, A+ 2t e').

As discussed above, we are free to assume that ¢ > R for any ﬁxed R, and we choose R large
enough that 3R~! < k. This implies that the contour \ + 2¢t~!e® is contained in the strip
|Sz| < K, and lies outside the disk |2] < ¢~'. We may therefore combine (75) and (76) to
obtain

0(t,\) < max(1l+ |A+ Qtfleia’71)6|<\‘9()\+2t—16m)|t
< ¢l max(1 + |\ + 2t 1|1,

and moreover, because |\ + 2¢t7'e™| > t7!, this gives
O(t, \) < (1 +t)elSM
as required.

We finish this section by describing the modifications that must be made to this approach
in the case of a general group, and we now let G be general again. We shall apply the
asymptotic of Gangolli-Varadarajan along maximal Levi subgroups of G. To do this, for
each maximal Levi L we define a cone Cy, in a that is adapted to the centralizer of L in a,

and such that a; C Br(0)UlJ; Cr. As before, the case of H € Br(0) may be handled easily,
so we fix L and bound ¢, (ef?) for H € Cy. If we define

Ou(H N = > Hwdpu(e),
weWr\W
then the asymptotic of Gangolli-Varadarajan reduces the problem to proving that
(77) OL(H,\) < (14 ||[N)*©(H, )\)mag/( o~ (PLAWSN)(H)
we

For this purpose, let k > 0 and let

(78) a*(k) ={A €ag : [|SN]| < K}

denote the tube of radius £ about a* C ag. For a constant C' > 0, we define
(79) Oroe (K, C) = {A € a™(k) : [{a, )| > CV a € Preq}

and af,. (r, C) = a* (k) \ a}y, (k, C). We may show (77) when A ¢ aZ,(x, |H||~") by applying
Theorem 2.3 inductively to L, together with standard bounds for c&. We then deduce (77)

for A € af, (s, |[H||~") from this using the maximum principle. We do this by choosing a

contour around A of the form \ + ve, for some v € a}. depending on ), such that

max O(H, A + ve'®) max e~ (PrroSOHeH) « O(H, \) max e~ (Pr+eSNH),
@ weW weW
We require v to satisfy ||v|| < |[H||™!, so that the exponential terms are roughly constant,

and also that A + ve' is at distance > ||H||~" from all root hyperplanes. In Lemma 9.2, we
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show that we may do this by choosing v = C||H||~!p, where C' < 1 depends on A\. We take
p as the direction of v because it is not orthogonal to any root, and we need to choose C
depending on A\ because we now have multiple root hyperplanes to avoid, and a choice of C
that avoids one hyperplane may end up intersecting another.

9.4. Preliminaries. We recall the notation a*(x) and af,,(x,C) from (78) and (79).

reg

Lemma 9.2. Let 0 < k' < k be given. Then there exists o > 1 depending only on G,
and D > 0 depending on k, k', and G such that the following holds. For each s < D and
A € a*(K'), there exists C' = C(s,\) € [1, 0] such that we have A\+zp € ai. (K, s) for|z| = Cs.

reg

Proof. Let 7 be a real number satisfying 7|(p,a)| > 2 and 7 > [{p, )| + 1 for all @ € Pq
(so in particular 7 > 1). We claim that we can take o = 72/®real 2,

To prove this, let 0 < k' < k, and let A € a*(x’) be given. It is clear that if C' € [1, 0]
and |z| = Cs for s sufficiently small depending on x and &', then A\ + zp € a*(k). We must
therefore show that there is a choice of C' € [1, 0] such that |[(A+ zp, )| > s for all |z| = Cs
and o € Preq.

Consider the disjoint intervals (7%s, 72#%25) for 0 < k < |®] |. Because there are at most
|®F ;| numbers of the form [(\, )|, one of these intervals does not contain |[(\, «)| for any
a € ®.q. We let C' = 728+ where k is index of one of the empty intervals. For each a our
choice of k implies that either [(\, a)| < 7%s or [()\, a)| > 72**2s. In the first case we have

[(A+zp, )] = [2[[(p; )| = [(A, )]

> 78| (p, a)] — s
= 1(rl{p, )| = 1)s
> S,

while in the second case a similar computation gives
(A +2p,0) = 7 s(1 = [{p, a)]) > s,

as required. O

9.5. Proof of Theorem 2.3: Reduction step. We will prove Theorem 2.3 by induction
on the semisimple real rank of G. The base case, when the rank is zero, is trivial, since the
spherical functions in this case are simply complex exponentials. We may therefore assume
that Theorem 2.3 holds for all proper Levi subgroups of G.

Let Bgr(0) denote the ball of radius R around the origin in a. As in the rank one case
discussed above, Theorem 2.3 holds when H € Bg(0), for any fixed R; this follows from
the bound |py(ef)]| < max e WSAH) 0 (ef), which in turn follows from e.g. Prop. 4.6.1 of

[GV8S8]. For the other H, we shall cover a, ~ Br(0) with cones adapted to the centers of
the maximal Levi subgroups of G.

Let ¥ = A~ {B} for some 5 € A. Let Ly be the Levi associated to 3, which is the
centralizer of the subspace ay = {H € a: a(H) = 0,a € X} = RfY. Let @5 be the root
system of Ly, which is given by &5, = &N > _Ra. We let Cx; C a be the cone consisting
of those H satisfying

(80) a(H) > c||H| for « € T N ®F,  ||H| > R.
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Roughly speaking, this is a cone around ax Na,. If ¢ is chosen small enough, the Cy for
various Y, together with Bg(0), cover a,. Thus, from now on assume that we have fixed
such a sufficiently small c.

We fix a ¥, and denote Ly simply by L. We prefer to write Cy, for Cy; and &, for 5. We
shall prove Theorem 2.3 for H € a, N Cy, using our hypothesis that it holds for L, together
with the following two ingredients. The first is the asymptotic expansion of ) along L given
in Theorem 5.9.3 of [GV88].

Proposition 9.3. Let L be a standard Levi subgroup of G and put

OL(HA) = Y c"(wh)ph,(e").
weW\W

Then there is a,k > 0, depending only on the constant ¢ appearing in (80), such that for all
A € a*(k) and H € Cp, we have

(81) or(e™) = e gL (H, X) + O((1+ | A7 =T,

Proof. We note that 6, (H, \) is initially defined only for A regular, but it is shown in Prop.
5.8.2 of [GV88] that it extends holomorphically to a*(k) if  is sufficiently small. (This result
is stated for a vector-valued function denoted O(X, m) in [GV88], but 0, (H, \) is equal to the
first coordinate of (A, e?).) This may also be shown in a more elementary way by proving
that the poles of ¢ along the root hyperplanes cancel in the sum.

For any ¢ > 0, Gangolli-Varadarajan [GV88] (5.9.4) define a set A™(Hy : () C A, which
in our case satisfies

AT (Hy:¢) =exp({H €a, : a(H) > C||H| for « € dT @] }).

If we choose ( = ¢, then we have exp(C,Na,) C AT (Hy : ). In Theorem 5.9.3(b) of [GV88],
the authors prove an asymptotic for ¢, (ef?) for all eff € A*(H, : ) that is equivalent to
(81), which implies the proposition. Note that we take the differential operator b € U(g)
appearing in that theorem to be trivial, in which case the operator v,(b) defined in (5.9.2)
of [GV88] is also trivial. O

The second ingredient is the following estimate for the main term 6y in the asymptotic
expansion (81).

Proposition 9.4. For a standard Levi subgroup L write

(82) oL N =3 ] falHw)

weWr, ae(bj'cd L

and write O¢ = © to accord with (4). Assume Theorem 2.3 holds for L with corresponding
constants a, k, so that

() < (14 [A)*O (H, 3) mae o058
weEW],
for X € a*(k) and H € a4, where aj, 4 is defined in (13). Then there are a',x" > 0 such

that for all H € a, NCy and all A € a*(k’), we have

0L(H,\) < (14 |AD¥O(H, /\)ma{/%/(e_(PL‘i‘w%)\)(H)‘
we
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We shall prove Proposition 9.4 in the next paragraph. Let us show how to deduce Theorem
2.3 for H € a, NCy, from these results. First, we apply the asymptotic expansion of ¢, along
L given in Proposition 9.3. The error term there is dominated by the majorant of Theorem
2.3, and Proposition 9.4 shows that the same is true of the main term, which completes the
proof.

9.6. Proof of Proposition 9.4. Recall the definition of a},,(x) and @, (%, C) from (78) and
(79). We shall show that the case of X € a},(k,c™"[|[H||!) can be treated in a straightforward
way, using the hypothesis of the prop051t10n We shall then deduce the bound for all A €
a*(k') for an appropriate choice of £’ from the case of A\ € a’,(x,c '||H|™") using the
maximum modulus principle, aided by Lemma 9.2.

For any A € a*(k), we have the bound

(83) < I @+ e,

ae‘bred\‘b

reg(

red,L

since for s small we have c,(s) < 1+ |s|~! because of the simple pole at s = 0, and for
s large with imaginary part bounded by x, we have cq(s) <, |s|7"/27™2e/2 < 1 4 |s|71.
Using (83) and the assumption of the proposition, we get

0u(H,\) < (1 -+ X)W (H, Nmax e300
we

for any A € a(k)*, where

U (H A= Y OgHuw\) [ @+ [wra)™).

weWr\W aE‘IJ d\q)red I

We claim that, when A € af,,(k,c'||H|™"), we have W (H,\) < ©(H,\). To see this, first
note that, by the W-invariance of (-, -) and the Wp-invariance of (I)Iad\(b;zd, ; (see Proposition
3.1), we have

I[I a+lwre)™=JI Qrlfswrsa) ™= [[  Q+liswra)l™).

+ + +
red\q)red,L Oée(I)red\(I)red,L aeq)red\cbred,L

for any s € Wy. Thus, recalling the definition of ©(H,wA) in (82), we find

U (H AN = > > ] fulHswr) I @+ wA e

acd

WEWL\W s€WL aedl | | CISCRAPN )
Z Z H fo(H, swA) H (1 + |(swA, a)|™h)
WEWL\W s€WL aedl | | CISCRN

Note that for H € Cy and X € &}, (k,c'||H||"), we have [(a, \)|™" < ¢|H| < a(H) for
all v € @\ @,/ s0 that (14 [(swh, )| ™) < fo(H, sw)). We put together the above
estimates to obtain

UHN < Y > ] fa Hoswh) =" ] falH s))=O(H,N).

weWr\W seWg ae<1>+ seW aeq;jed

The above bounds then establish the case of X € af, (k; ¢ || H||71).
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We now let k" € (0, k) and take A € a*(x’). We apply Lemma 9.2 to A and s = ¢ || H|| ™,
and let C' = C(H,\) € [1,0] be the constant produced. Note that to apply Lemma 9.2, we
may have had to make R bigger which we are free to do. Applying the maximum modulus
principle, together with the already established bound in the case of A € af, (x, ¢ | H||71),
gives

0r(H,\) < max O (H,\+ z
dHA) < a0 2

¢ —(pL+wS(A+2p))(H)
|z\:C‘Icn—éll‘}‘([ﬂ—1(1+ ||)\+Zp||) 9(H7A+Zp)gle%<e L

< (14 ||\ *max e~ PeFwSOH=0)) - max  Q(H, A + zp).
weW |z|=Cc—1||H||—1

Note that in the above chain of inequalities it was crucial that, even though C'(\) varies with
A, C(N\) always lies in a bounded range.
It therefore remains to show that

max O(H, A+ zp) < O(H,\),
|z|=Cc1||H]||~1 ( ) ( )
which in turn follows from
(84) min(|a(H)| +1,[(X, B)| 7 + 1) < min(|a(H)| +1,[{(A + zp, )| 7" + 1)

for |z] = Cc™||H||™! and a,8 € ®Pq. In the case when |(\,B)| < ¢ '||H||™!, we have
(A + 2p, BY| < ||H||7!, so that

[ BT KA+ 20, B) 71> (IH| > |a(H).

This implies that both minima are =< |a(H)| + 1, as required. When [(\, 8)| > ¢ || H|| 7!,
we have |(\, 5)] < |[(\+ zp, B)|, which again implies (84).
This completes the proof of Proposition 9.4 and hence of Theorem 2.3.

9.7. Proof of Theorem 2.4. We now deduce Theorem 2.4 from Theorem 2.3. We will do
this by passing between the bounds (6) and (7) for ¥ and ¢, and so for the convenience
of the reader we recall that these bounds state that

(85) ox(H) < Y [T @+ la@E)(wA o)),

weW acd+

and

(86) pale!) < e T (la(m)+1) Y TT 0+ la(H) (wh o)),

acdt weW acd+

for H € at and \ € a*. To establish these, Lemma 9.5 below shows that Theorem 2.3 implies
(86) when ||A|| < 1, which in turn implies (85) when ||A|| < 1. We then use the fact that
OB (H/r) = ¥ (H) for any r > 0, which follows from the bilinearity of the inner product in
the phase function in (5), to deduce (85) for all A\. This implies (86) for all A, and completes
the proof.

Lemma 9.5. Let R > 0 be given. In the range when \ € a* satisfies ||| < R, the bounds

for @y giwven by Theorems 2.3 and 2.4 are equivalent up to a constant factor depending on

R.
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Proof. If we define

B la(H)|+1
9ol H 0N = o oA ) [+ 1

for H € a, A\ € ai, and w € W, then the bound of Theorem 2.4 reads

or(e) <« e~ Pt Z H ga(H,w).

weW aed+t
It therefore suffices to prove that f,(H,w\) <g go(H,wA) for ||A]| < R, as this will imply

that
OH N =Y [] faHwr) =<z > [] galH w))

weW aedt weW aed+
as required. To establish f, =< g., we consider the cases |a(H){wA, a)| < 1 and |a(H){wA, a)| >
1 separately. When |a(H)(wA, )| < 1, we have

fo(H,wA) = |a(H)| + 1 < go(H,w)),
as required. When |a(H)(wA, a)| > 1, we have
fo(H wA) = [(w, )| 7" + 1

and
la(H)|+1 1 .
ga(H, wA) = ———r—— = [(wA, a) |7 + [(H ) (wA, )|
[a(H)(wA, a)
The result follows in this case because [(w\, a)|™t >x 1 and |a(H)(wA, o)t < 1. O
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